Producing Or Treating Iron(fe) Or Iron Alloy Patents (Class 75/10.66)
  • Publication number: 20150093285
    Abstract: The present invention relates to a magnetic material, which contains at least one transition metal (TM), at least one rare earth metal (RE) and tungsten, wherein the proportion of transition metal (TM) is 60 to 90% by mass, the proportion of rare earth metal (RE) is 10 to 20% by mass, and the proportion of tungsten (W) is 5 to 25% by mass, in each case in relation to the total mass of the magnetic material.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 2, 2015
    Inventors: Stefan Hinderberger, Christian Wegierski, Peter Barth, Gerhard Schneider, Arne Huber, Juergen Oberle, Dagmar Goll, Friederike Koeppen, Lars Bommer, Roland Stein, Markus Raith, Alberto Martinez-Limia, Roman Karimi, Ingrid Wuehrl, T-akashi Shigematsu
  • Publication number: 20140345422
    Abstract: Provided is a method in which, when discarded batteries such as lithium-ion batteries are treated by a dry process, slag having a reduced viscosity is obtained to heighten the recovery of valuable metals. The method for recovering valuable metals includes a dry process (S20) which includes a melting step (ST21), a slag separation step (ST22), and an alloy separation step (ST23), the slag having an aluminum oxide content of 5 mass % or higher but less than 20 mass % and an iron content in terms of metallic iron amount of 20-40 mass %. Furthermore, silicon oxide and calcium oxide are added as a flux in the melting step (ST21) so that the slag has a melting point of 1,400° C. or lower, and the melting step (ST21) is conducted at 1,400° C. or lower. Thus the recovery of the alloys can be heightened.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Jun-Ichi Takahashi, Kazuhiro Mori
  • Publication number: 20140328714
    Abstract: One embodiment provides a method of making an alloy feedstock, comprising: forming a first composition by combining Fe with a first nonmetal element; forming a second composition by combining Fe with a plurality of transition metal elements; forming a third composition by combining the second composition with a second nonmetal element; and combining the first composition with the third composition to form an alloy feedstock.
    Type: Application
    Filed: November 21, 2011
    Publication date: November 6, 2014
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20140318314
    Abstract: A method for melting steel in an electric arc furnace (EAF). A hot heel is provided in the EAF. Metal scrap is loaded into the EAF. The metal scrap is melted in the EAF. The mass of the hot heel in relation to the mass of the metal scrap that is initially beyond the surface of the hot heel is a certain minimum. This minimum is 0.75 times the relation between the heat required to melt the metal scrap beyond the surface of the hot heel and the heat that can be taken from the hot heel without it being solidified when a theoretical heat balance calculation is applied as defined in a formula.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 30, 2014
    Inventors: Rebei Bel Fdhila, Jan-Erik Eriksson, Olof Hjortstam, Mohamed Ali Rahmani, Shiva Sander-Tavallaey, Ola Widlund, Hongliang Yang, Xiaojing Zhang
  • Patent number: 8871000
    Abstract: The present invention relates generally to a smelting operation or the like, by which molten metal is produced from a metal oxide after metal oxide agglomerates are directly reduced and melted with a carbonaceous material in an electric heating and melting furnace. More specifically, the present invention relates to an electric furnace for producing molten metal that has material recycling capability, especially in-process material recycling capability.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 28, 2014
    Assignee: Midrex Technologies, Inc.
    Inventor: Masahiko Tetsumoto
  • Patent number: 8771397
    Abstract: A steelmaking plant including a pressurized direct reduction reactor for continuous production of hot direct reduced iron with a batch-melting furnace and a standby cooler, all three being capable of being situated side-by-side, with such DRI being able to be alternatively fed to the furnace or to the cooler. The furnace is selectively charged through a diverter valve by a pneumatic transport system with the hot DRI being entrained in a carrier gas fed into a receiving bin (having an upper DRI/gas disengagement space and a lower DRI buffer portion). A pressurized charge of the DRI accumulated in such disengaging/buffer bin is periodically fed down into a dosing/depressurization bin which in turn depressurizes the DRI and feeds a batch of DRI down into the furnace. Upon sensing that the buffer portion is full, the DRI is then pneumatically diverted to the cooler, such as during furnace maintenance shut down.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: July 8, 2014
    Assignees: HYL Technologies, S.A. de C.V., Danieli & C. Officine Meccaniche, S.p.A.
    Inventors: Gilberto Garza-Rodriguez, Andrea Tavano, Octavio Jorge Becerra-Novoa
  • Patent number: 8562713
    Abstract: A combined arc furnace, ladle metallurgical furnace and vacuum degassing system having the flexibility to produce at least non-vacuum arc remelt, vacuum arc remelt, vacuum oxygen decarburized non-vacuum arc remelt, and vacuum oxygen decarburized vacuum arc remelt steels from one off to continuous casting end uses in steady state or randomized order which utilizes only a minimum of energy attributable to preheating hot metal contacting components of the system followed by heat loss reduction of the components and use of a carryover heel in the arc furnace, in which the throughput of the system is limited solely by the melting capacity of the arc furnace.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: October 22, 2013
    Assignee: A. Finkl & Sons Co.
    Inventors: John A. Guliana, Guy A. Brada, Christian H. Ericksen, Bruce C. Liimatainen, Algirdas A. Underys
  • Patent number: 8557014
    Abstract: A carbonaceous-based metallizing method and apparatus wherein a metallic oxide is converted into a carbon-containing, metallized intermediate that is melted in an induction channel furnace to produce liquid metal from said metallic oxide. In the application of iron ore in the form of fines or concentrate, using low-cost coal will greatly reduce capital and operating costs by virtue of eliminating agglomeration of ore, cokemaking, and blast furnace operation. The liquid iron so produced is efficiently converted into steel in a steelmaking furnace such as a basic oxygen furnace (BOF), especially when it is physically integrated to the induction channel furnace wherein the liquid iron is directly poured into the integrated BOF by the induction channel furnace, producing low-cost steel, little heat loss, and minimum emissions.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 15, 2013
    Inventors: Albert Calderon, Terry James Laubis, Richard Owen McCarthy
  • Publication number: 20130195712
    Abstract: There is provided a method for obtaining a pure melt in which the impurities Mn, Al, Ti, Pb, Zn, and B are removed from molten cast iron and depletion of useful C and Si is suppressed, the method wherein an excess oxygen flame having a theoretical combustion ratio of fuel and oxygen (amount of oxygen (volume)×5/amount of fuel (volume)) of 1 to 1.5 is directly exposed to the surface of pre-melted molten cast iron, the temperature of the molten cast iron is held at 1250° C. or more and less than 1500° C. while the melt surface is superheated and an acidic slag is brought into contact with the melt, and an oxygen-containing gas is injected into the interior of the molten cast iron.
    Type: Application
    Filed: January 24, 2011
    Publication date: August 1, 2013
    Applicants: KIMURA CHUZOSHO CO., LTD., MIE PREFECTURE, SENSHU CORPORATION, NANIWA ROKI CO., LTD., HITACHI METALS, LTD., KINOSHITA MANUFACTORY CO., LTD.
    Inventors: Toshitake Kanno, Ilgoo Kang, Takao Fujikawa, Hiromitsu Takeuchi, Kiyoshi Kinoshita, Hirotoshi Murata, Nobuya Yamamoto, Tatsuo Atsumi
  • Publication number: 20130125704
    Abstract: A method for treating spheroidal graphite iron includes the step: pouring molten spheroidal graphite iron into a pouring electrical furnace (1); covering the molten spheroidal graphite iron (5) with alkali slag (6) which is melted at high temperature and rich in alkali earth metal ion, rare earth metal ion, or mixture of them; connecting the molten spheroidal graphite iron (5) with the negative pole of the direct current source by one pole (7); connecting the alkali slag (6) with the positive pole of the direct current source by another pole (4), treating the molten spheroidal graphite iron (5) with the alkali slag (6) which is used as electrolyte. The method can prevent the spheroidized fading velocity of the spheroidal graphite iron. The pouring electrical furnace can be used for treating the molten spheroidal graphite iron.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Inventors: Yuxin WANG, Juren LIU
  • Publication number: 20120260771
    Abstract: A method of fabricating a stainless martensitic steel includes a step of electroslag remelting of an ingot of the steel then a step of cooling the ingot. Before the skin temperature of the ingot falls below the martensitic transformation temperature Ms of the steel, the ingot from electroslag remelting is placed in a furnace with an initial temperature T0 that is then higher than the pearlitic transformation completion temperature on cooling, Ar1, of the steel, the ingot undergoing a homogenization treatment in the furnace for at least a holding time t after which the temperature of the coldest point of the ingot has reached a homogenization temperature T, the holding time t being equal to at least one hour, with the homogenization temperature T being in the range approximately 900° C. to the burning temperature of the steel.
    Type: Application
    Filed: October 11, 2010
    Publication date: October 18, 2012
    Applicant: SNECMA
    Inventors: Laurent Ferrer, Patrick Philipson
  • Publication number: 20120167717
    Abstract: The present invention relates to a method for manufacturing an amorphous alloy by using liquid pig iron. The exemplary embodiment of the present invention provides a method for manufacturing an amorphous alloy, including providing liquid pig iron, adding an alloy material to the liquid pig iron, and solidifying the liquid pig iron.
    Type: Application
    Filed: December 28, 2009
    Publication date: July 5, 2012
    Applicant: POSCO
    Inventors: Sang-Ho Yi, Seung Dueg Choi, Seong Hoon Yi
  • Publication number: 20120125152
    Abstract: An electric arc melting facility includes a melting chamber configured to melt a source iron therein by an electrode, and a shaft-shaped preheating chamber directly connected to the melting chamber. The preheating chamber includes a bottom surface inclined downward toward the melting chamber. A shaft opening dimension is set to an optimum value for controlling the supply of the source iron. A pushing device is disposed at a lower side of the preheating chamber and configured to move the source iron toward the melting chamber. The supply of the source iron from the preheating chamber to the melting chamber is performed by operating the pushing device. The supply of the source iron from the preheating chamber to the melting chamber is stopped by halting the operation of the pushing device.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 24, 2012
    Applicant: JP Steel Plantech Co.
    Inventor: Yasuhiro Sato
  • Publication number: 20120045358
    Abstract: Provided is a high manganese nitrogen-containing steel sheet. The high manganese nitrogen-containing steel sheet according to the present invention comprises 0.5 to 1.0 wt % of carbon, 10 to 20 wt % of manganese, 0.02 to 0.3 wt % of nitrogen, with a remainder of Fe and unavoidable impurities. The high manganese nitrogen-containing steel sheet according to the present invention produces an austenite phase at room temperature, in which the stacking fault energy is effectively controlled by adding chrome and nitrogen. Accordingly, the high manganese nitrogen-containing steel sheet of the present invention produces a mechanical twin during the plastic deformation of the steel sheet, thereby increasing the work hardening rate, tensile strength, and workability.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 23, 2012
    Applicant: HYUNDAI STEEL COMPANY
    Inventors: Young Kook Lee, Yeon Seung Jung, Sin Gon Kang, Dong Joon Min
  • Publication number: 20110094336
    Abstract: The invention relates to a method for producing a steel melt containing up to 30% of Mn, which additionally may comprise up to 5% Si, up to 1.5% C, up to 22% Al, up to 25% Cr, up to 30% Ni, and up to 5% each of Ti, V, NB, Cu, Sn, Zr, Mo, and W, and up to 1% each of N and P, with the remainder being iron and unavoidable steel companion elements.
    Type: Application
    Filed: November 17, 2008
    Publication date: April 28, 2011
    Applicants: SALZGITTER FLACHSTAHL GMBH, PEINER TRAGER GMBH
    Inventors: Karl-Heinz Spitzer, Christian Redeker
  • Publication number: 20110094337
    Abstract: A steelmaking plant method and apparatus which includes a pressurized direct reduction reactor for continuous production of hot direct reduced iron (ORI); feeding such DRI to a batch melting furnace or to a standby cooler. The furnace is selectively charged through a diverter valve by a pneumatic transport system with the hot DRI being entrained in a motive carrier gas fed via a first conduit into a receiving bin. A pressurized charge of the DRI accumulated in such disengaging buffer bin is periodically fed via a second conduit down into low dosing/depressurization bin which in turn depressurizes the DRI and feeds a batch of DRI down into the furnace. Upon sensing the capacity of the buffer portion of the receiving bin being filled, the DRI! is then pneumatically diverted from the reactor to the cooler, such as during shut down of the furnace for maintenance or otherwise.
    Type: Application
    Filed: April 17, 2008
    Publication date: April 28, 2011
    Inventors: Gilberto Garza-Rodriguez, Andrea Tavano, Octavio Jorge Becerra-Novoa
  • Publication number: 20100175506
    Abstract: The present invention is directed to a method for producing a carbon fiber-pitch binder composition, the method comprising combining surface-modified carbon fibers with a molten pitch binder such that the surface-modified carbon fibers are substantially homogeneously dispersed throughout said molten pitch binder, wherein said surface-modified carbon fibers possess a surface that has been modified in a manner that increases the dispersability of the carbon fibers into said molten pitch binder. The invention is also directed to a method for producing a toughened graphite electrode and a method for processing metal in an electric arc furnace. The invention is also directed to carbon fiber-pitch binder compositions prepared by the inventive method in which carbon fibers are substantially homogeneously dispersed in the composition.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Applicant: UT-BATTELLE, LLC
    Inventors: Peter J. Pappano, Cristian I. Contescu
  • Publication number: 20100003162
    Abstract: It is proposed to make a change to the barrel material and also its constituent proportions and to undertake a production method which is already known from the large caliber barrel but which is specially adapted for medium caliber barrels. A barrel is created which is now made from a NiCrMoV steel blank which as an ingot was remelted in the ESR (electro-slag remelting) process before forging and the forged bars were quenched and tempered in a liquid quenching and tempering process. A barrel for a machine gun is thus disclosed which has the quality/characteristics of a large caliber barrel.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 7, 2010
    Inventors: Wolfgang Arrenbrecht, Walter Grimm
  • Publication number: 20090293671
    Abstract: Efficient coordination of processing (by desulphurising) and moving hot metal from a direct smelter, producing hot metal on a continuous basis, to an electric arc furnace DIRECT or furnaces, operating on a batch basis, is disclosed. The invention includes the use of hot metal storage devices, such as ladles, that are large enough to supply hot metal for a small number, preferably two or three, of electric arc furnace batch operations.
    Type: Application
    Filed: October 10, 2005
    Publication date: December 3, 2009
    Applicant: TECHNOLOGICAL RESOURCES PTY. LIMITED
    Inventors: Christopher Martin Hayman, Stephan Heinz Josef Victor Weber
  • Patent number: 6740138
    Abstract: A method of producing a molten steel, including the steps of putting, in an electric furnace, an iron material and a carbon material, to melt the iron material and the carbon material and produce a high-carbon molten iron whose carbon content is not lower than 1%, storing, in a reservoir furnace whose capacity is larger than a capacity of the electric furnace, an amount of the high-carbon molten iron that corresponds to a plurality of charges of the electric furnace, and using a portion of the high-carbon molten iron stored in the reservoir furnace, to produce the molten steel in a steel producing furnace.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: May 25, 2004
    Assignee: Daido Tokushukou Kabushikikaisha
    Inventors: Hajime Amano, Akihiro Nagatani, Atushi Hattori
  • Patent number: 6689182
    Abstract: A method capable of suppressing damages to furnace wall refractories in a melting furnace and making the working life of them longer and a technique capable of obtaining a molten iron with homogenized composition while keeping a high productivity upon arc heating a pre-reducing iron in a melting furnace to obtain a molten iron, the method comprising supplying a pre-reducing iron to a stationary non-tilting type melting furnace and melting the iron by an arc heating mainly composed of radiation heating, the melting being performed while keeping a refractory wearing index RF represented by the following equation at 400 MWV/m2 or less. RF=P×E/L2 (wherein RF represents the refractory wearing index (MWV/m2); P represents an arc power for one phase (MW); E represents an arc voltage (V); and L represents the shortest distance between the electrode side surface of a tip within an arc heating furnace and a furnace wall inner surface (m).
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: February 10, 2004
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Tokuda, Shuzo Ito, James C. Simmons, Robert F. Edgar
  • Patent number: 6391081
    Abstract: A metal purification method and a metal refinement method in which metals of high purity can be easily refined and recovered without increasing the size of the purification and refining devices or complicating the operation. To this end, metals containing impurities are molten in a plasma arc containing active hydrogen to remove the impurities. If the metals contain ceramics inclusions, the metals are molten in a plasma arc containing active hydrogen and the ceramics inclusions are caused to float over the molten metal by exploiting the difference of density between the molten metal and the ceramics inclusions. The floating ceramics inclusions are decomposed and removed. For application to refining, the metal oxides are molten in a plasma arc containing active hydrogen so as to be reduced to metals.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 21, 2002
    Assignee: Sony Corporation
    Inventors: Masahito Uchikoshi, Norio Yokoyama, Minoru Isshiki, Kouji Mimura
  • Patent number: 6375701
    Abstract: The state of slag foaming generated in an electric furnace steel manufacture is judged by measuring the NOx amount in exhaust gas. The foaming state is adjusted to completely interrupt the contact of melted steel with air so that low nitrogen of the steel is always achieved or reduction of electric power consumption rate is achieved. Thus, in the manufacture of steel by subjecting iron scrap to dissolving, refining and heating stages successively in an electric arc furnace, the NOx amount in the exhaust gas is measured at the refining and heating stages of the melted steel and then the state of the slag foaming is judged depending upon the measured data.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: April 23, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Katsutoshi Yamashita, Arata Ueda, Toyohito Nakahara
  • Patent number: 6264723
    Abstract: A method and a plant for manufacturing steel in an electric steel furnace wherein the electric steel furnace is charged with at most 70% scrap and with at most 60% liquid pig iron obtained in a mini-blast furnace, and optionally with additional iron carriers, and wherein the mini-blast furnace is operated for producing the pig iron with iron pellets and/or coarse or lump ore and coke as well as coal. The melting process in the electric steel furnace is operated using electrical energy and by simultaneously using oxygen and injected coal. The plant for carrying out the method is composed of a mini-blast furnace and an electric steel furnace.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 24, 2001
    Assignee: SMS Schloemann-Siemag Aktiengesellschaft
    Inventor: Fritz-Peter Pleschiutschnigg
  • Patent number: 6251156
    Abstract: This invention relates to a method for operation of a rotary hearth furnace in conjunction with an electric melter for production of high purity iron product having a range of silicon and manganese, with low sulfur and phosphorus content. The method includes producing high purity iron product and a range of carbon content product from iron oxide and carbon bearing compacts, including the steps of providing a furnace for direct reduction of iron oxide and carbon bearing compacts, pre-reducing iron and carbon bearing compacts in a furnace having a rotary hearth surface, producing intermediate carbon-containing metallized iron. An electric melter furnace is utilized for receiving intermediate carbon-containing metallized iron from the pre-reducing step, which is fed directly and continuously into a central interior area of the electric melter, with heating of the carbon-containing metallized iron in the electric melter under elevated temperatures of about 1300° C. to about 1700° C.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 26, 2001
    Assignee: Midrex Technologies, Inc.
    Inventors: Glenn E. Hoffman, Ronald D. Gray