Flake Or Fibrous Constituent Or Fibrous Grain Structure Patents (Class 75/229)
  • Patent number: 5865912
    Abstract: Described herein is an SiC-reinforced aluminum alloy composite material of the type having silicon carbide uniformly dispersed in an aluminum alloy matrix containing magnesium as a strengthening element, characterized in that the composite material contains Al4C3 in an amount smaller than 0.5 wt % and residual oxygen in an amount smaller than 0.4 wt %, and has a modulus of elasticity higher than 9000 kgf/mm.sup.2.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: February 2, 1999
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Morimoto, Kenichiro Ouchi, Hiroshi Iwamura
  • Patent number: 5841041
    Abstract: A porous mold material is provided that contains pores for ventilation in a metal casting, which pores range from 20 to 50 microns, and wherein the porosity value of the porous mold material ranges from 25 to 35% by volume. A method is further provided of producing a porous mold material that contains pores ranging from 20 to 50 microns for ventilation in casting, which method is characterized in that the mixing ratio of stainless steel particles to stainless steel short fibers is from 40 wt %:60 wt % to 65 wt %:35 wt %. The porous mold material of this invention does not have defects such as the inferior fluidity of a molten metal in the mold, or the shrinkage and blowholes in cast products.
    Type: Grant
    Filed: September 18, 1996
    Date of Patent: November 24, 1998
    Assignee: Sintokogio, Ltd.
    Inventors: Norihiro Asano, Tatsuhiko Kato
  • Patent number: 5529600
    Abstract: A material for friction components made by a process including the steps of providing a first powder consisting of grains of a comparatively harder material with a comparatively higher coefficient of friction and an average grain size of from 60 to 100 microns, and a second powder consisting of grains of comparatively softer material with a comparatively lower coefficient of friction and an average grain size of from 60 to 100 microns; mixing the first powder and the second powder to form a powder mixture having a total volume; and subjecting the powder mixture to a pressure and temperature sufficient for the grains of the first powder to be intermixed with the comparatively softer material of the second powder so that the comparatively harder material substantially fills an intergranular space between the grains of the first powder to form the material for the friction components, the comparatively harder material occupying from 1/3 to 4/5 of the total volume of the powder mixture.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: June 25, 1996
    Assignee: Sintermetal S.A.
    Inventors: Antonio R. Fernandez, Pascal Belair, Jean R. Gras
  • Patent number: 5508116
    Abstract: A metal matrix composite reinforced with shape memory alloy is disclosed ch is formed by blending metal particles and shape memory alloy particles to form a homogeneous powder blend, and consolidating the powder blend to form a unitary mass. The unitary mass is then plastically deformed such as by extrusion in the presence of heat so as to cause an elongation thereof, whereby the metal particles form a matrix and the shape memory alloy partices align in the direction of elongation of the unitary mass. The composite can be used in structural applications and will exhibit shape memory characteristics.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: April 16, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: David J. Barrett
  • Patent number: 5501728
    Abstract: The present invention relates to a friction material for use in manufacturing various friction bearing components such as brakes, clutches, couplings, transmission systems and the like. The composition of the friction material includes a base friction material and a metal sulfide-iron powder alloy mixture which is added to the base material and further mixed prior to compression molding the desired component.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: March 26, 1996
    Assignee: Brake Pro, Inc.
    Inventors: Christopher C. Shepley, David R. Carter
  • Patent number: 5470371
    Abstract: Articles having improved strength at high temperature are made from near-eutectic nickel-base superalloys. In such alloys, the improved properties are achieved by preventing the formation of a dispersed second phase during the production of alloy powder. After the powder is consolidated, a dispersion of the second phase is developed through thermal treatment. Consolidation may be achieved by direct application of pressure, or by incremental solidification processes. Some of these alloys are formulated to achieve additional strengthening by precipitation hardening.
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: November 28, 1995
    Assignee: General Electric Company
    Inventor: Ramgopal Darolia
  • Patent number: 5418071
    Abstract: In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 23, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Takashi Ishigami, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Minoru Obata, Shigeru Ando
  • Patent number: 5364442
    Abstract: A composite electrode for electrochemical processing having improved high temperature properties, and a process for making the electrode by combustion synthesis. A composition from which the electrode is made by combustion synthesis comprises from about 4% to about 90% by weight of a particulate or fibrous combustible mixture which, when ignited, is capable of forming an interconnected network of a ceramic or metal-ceramic composite, and from about 10% to about 60% by weight of a particulate or fibrous filler material capable of providing the electrode with improved oxidation resistance and maintenance of adequate electrical conductivity at temperatures above 1000.degree. C. The filler material is molybdenum silicide, silicon carbide, titanium carbide, boron carbide, boron nitride, zirconium boride, cerium oxide, cerium oxyfluoride, or mixtures thereof.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: November 15, 1994
    Assignee: Moltech Invent S.A.
    Inventor: Jainagesh A. Sekhar
  • Patent number: 5304427
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb--Ti.sub.27-40.5 --Al.sub.4.5-10.5 --Hf.sub.1.5-5.5 Cr.sub.4.5-8.5 V.sub.0-6,where each metal of the metal/metal composite has a body centered cubic crystal structure, andwherein the ratio of concentrations of Ti to Nb (Ti/Nb) is greater than or equal (.gtoreq.) to 0.5, andwherein the maximum concentration of the Hf+V+Al+Cr additives is less than or equal (.ltoreq.) to the expression:16.5+(5.times.Ti/Nb),and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: April 19, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5277990
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb--Ti.sub.32-45 --Al.sub.3-18 --Hf.sub.8-15and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: January 11, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5264293
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb-Ti.sub.35-45- Hf.sub.10-15,and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: November 23, 1993
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5217526
    Abstract: A method of making a tantalum capacitor of improved specific capacitance (and volumetric efficiency) is described. Short tantalum fibers are precipitated out of a carrier liquid to form a felt, or tumbled to form fiber containing particles, and in either case subsequently bonded so as to form a felt or particles containing the fibers in random orientation in substantially non-aligned array. These particles or felt are heated to bond the fibers together, purify and (optionally) cylindricalize them. The felt or particles can be processed in conventional fashion thereafter to form the capacitor. Cylindricalized fibers and pellets of increased surface area are also described.
    Type: Grant
    Filed: May 31, 1991
    Date of Patent: June 8, 1993
    Assignee: Cabot Corporation
    Inventor: James A. Fife
  • Patent number: 5173107
    Abstract: The invention relates to a composite hard metal body of hard material, a binder and embedded reinforcing material, as well as to a process for the production of the composite hard metal body by methods of powder metallurgy.In order to create a composite hard metal body with improved toughness under load, improved hardness and a lower fracture susceptibility, the invention proposes to build in monocrystalline, preferably needle-shaped and/or platelet-shaped reinforcing materials, coated with an inert layer with respect to the binder metal phase and consisting of borides and/or carbides, and/or nitrides and/or carbonitrides of the elements of Groups IVa or Va or mixtures thereof and/or coated monocrystalline reinforcing material of SiC, Si.sub.3 N.sub.4, Si.sub.2 N.sub.2 O, Al.sub.2 O.sub.3, ZrO.sub.2, AlN and/or BN.
    Type: Grant
    Filed: June 10, 1991
    Date of Patent: December 22, 1992
    Assignee: Krupp Widia GmbH
    Inventors: Klaus Dreyer, Hans Kolaska
  • Patent number: 5152828
    Abstract: The present invention relates to a method of producing a mold material used for obtaining a mold for casting metals such as Zn, Al and the like or molding resins. In the method, the short fibers having an aspect ratio of 30 to 300 and obtained by cutting ferritic stainless steel long fibers having a width of 100 .mu.m or less, ferritic stainless steel powder and at least one of Cu powder and Cu alloy powder are used as raw materials. The raw materials are blended to obtain a material mixture which is then compressed under pressure in a Cold Isostatic Press process. The thus obtained compressed product is sintered in a vacuum atmosphere. The sintered material is held in an atmosphere of nitrogen gas or decomposed ammonia gas so that 0.3 to 1.2 wt % of nitrogen is added to the stainless steel in the sintered material. The thus obtained mold material has a hardness of HMV 250 to 500.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: October 6, 1992
    Assignee: Sintokogio Ltd.
    Inventor: Tatsuhiko Katoh
  • Patent number: 5096661
    Abstract: A porous intermediate compact is first prepared from metal particles, carbon and a temporary binder. The compact is then heated to remove the binder and then infiltrated with the vapor of a metal having a melting point lower than the compact.
    Type: Grant
    Filed: April 2, 1991
    Date of Patent: March 17, 1992
    Assignee: Raybestos Products Company
    Inventor: Richard D. Lang
  • Patent number: 5080712
    Abstract: Methods for preparing sintered components from iron-containing and alloy steel powder are provided. The methods includes compacting a powder mixture in a die set at a pressure of at least about 25 tsi to produce a green compact which is then presintered at a temperature of about 1100.degree.-1600.degree. F. (593.degree.-870.degree. C.) for at least about 5 minutes to produce a presintered preform. The presintered preform is then compacted at a pressure of at least about 25 tsi to produce a double-pressed presintered preform, which is, in turn, sintered at a temperature of at least about 1000.degree. C. for at least about 5 minutes to produce a sintered component having improved transverse rupture strength and a higher density.
    Type: Grant
    Filed: May 16, 1990
    Date of Patent: January 14, 1992
    Assignee: Hoeganaes Corporation
    Inventors: William B. James, Robert J. Causton, John J. Fulmer
  • Patent number: 5051231
    Abstract: A method for the fabrication of a superplastic composite material having metallic aluminum reinforced with silicon nitride includes thoroughly mixing silicon nitride with metallic aluminum, pressure-sintering the resultant mixture, further heating and pressing the sintered mixture, hot extrusion-molding the resultant sintered article, subjecting the molded article, when necessary, to a heat treatment such as the T6 treatment thereby forming a superplastic composite material, and deforming the composite material in a temperature region in which the material exhibits superplasticity.
    Type: Grant
    Filed: September 14, 1990
    Date of Patent: September 24, 1991
    Assignees: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Tsunemichi Imai, Mamoru Mabuchi
  • Patent number: 5030277
    Abstract: A method for fabricating a titanium aluminide composite structure consisting of a filamentary material selected from the group consisting of silicon carbide, silicon carbide-coated boron, boron carbide-coated boron, titanium boride-coated silicon carbide and silicon-coated silicon carbide, embedded in an alpha-2 titanium aluminide metal matrix, which comprises the steps of providing a first beta-stabilized Ti.sub.3 Al powder containing a desired quantity of beta stabilizer, providing a second beta-stabilized Ti.sub.3 Al powder containing a sacrificial quantity of beta stabilizer in excess of the desired quantity of beta stabilizer, coating the filamentary material with the second powder, fabricating a preform consisting of the thus-coated filamentary materials surrounded by the first powder, and applying heat and pressure to consolidate the preform.The composite structure fabricated using the method of this invention is characterized by its lack of a denuded zone and absence of fabrication cracking.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: July 9, 1991
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, William C. Revelos, Paul R. Smith, Jr.
  • Patent number: 5022918
    Abstract: A heat-resistant aluminum alloy sinter comprises 5 to 12% by weight of Cr, less than 10% by weight of at least one selected from the group consisting of Co, Ni, Mn, Zr, V, Ce, Fe, Ti, Mo, La, Nb, Y and Hf, and the balance of Al containing unavoidable impurities. A silicon carbide fiber is included for reinforcing the sinter in a fiber volume fraction range of 2 to 30%.
    Type: Grant
    Filed: December 1, 1988
    Date of Patent: June 11, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seiichi Koike, Hiroyuki Horimura, Masao Ichikawa, Noriaki Matsumoto
  • Patent number: 5015289
    Abstract: A manufacturing method for a metal body by means of injection molding that comprises the steps of mixing and kneading a metal powder with short fibers such as metallic fibers, carbon fibers and an organic binder, injection-molding the kneaded mixture to form a green body, removing the organic binder from the green body, and sintering the brown body. The short fibers are added in an amount ranging from about 0.1 to 20 wt. % against 100 wt. % of the metal powder and have a melting point of at least 350.degree. C., and at the time of sintering the fibers not less than 30 vol. % become fused and then integrated with the metal. The short fibers act as a reinforcement, strengthening the brown body as well as preventing deformation and cracking of the green body during debinding.
    Type: Grant
    Filed: August 10, 1990
    Date of Patent: May 14, 1991
    Assignee: King Invest Co., Ltd.
    Inventors: Takuo Toda, Masao Tsuda
  • Patent number: 5013610
    Abstract: In a heat resisting aluminum alloy member with local metal matrix composite which contains inorganic fibers as reinforcing material, the matrix aluminum alloy of the metal matrix composite contains very little alloying elements in order to attain the highest heat shock resistance.
    Type: Grant
    Filed: March 26, 1990
    Date of Patent: May 7, 1991
    Assignee: Izumi Industries, Ltd.
    Inventor: Yoshihiro Suzuki
  • Patent number: 5006163
    Abstract: A novel, nickel-base, high temperature alloy body preferably containing about 20% chromium, 6 to 7% aluminum to provide phase, 1.5 to 2.5% molybdenum, 3 to 4.5% tungsten, additional strengthening elements and oxidic yttrium in finely dispersed form. The alloy body has an elongated crystal structure and is characterized by high strength along with excellent hot corrosion and oxidation resistance.
    Type: Grant
    Filed: May 8, 1989
    Date of Patent: April 9, 1991
    Assignee: Inco Alloys International, Inc.
    Inventors: Raymond C. Benn, Jeffrey M. Davidson, Kenneth R. Andryszak
  • Patent number: 5004497
    Abstract: A friction material containing 0.85 to 30% by weight of carbon fibers and 2 to 20% by weight of aramid fibers for use as brake pads, brake linings, clutch facings and other mechanical component parts which are subjected to severe frictional contact with other mechanical component parts. The aramid fibers preferably consist of para-aramid fibers and/or a combination of chopped aramid fibers and fibrillar aramide fibers. There is a certain preferred range for the ratio between the aramid fiber content and the carbon fiber content. This friction material offers advantages in a high-temperature stability of the coefficient of friction, a favorable wear property, freedom from sticking and uneven wears, and superior anti-fade properties.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: April 2, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Katsuhiro Shibata, Yuichi Azuma, Tsuguya Suzuki
  • Patent number: 4999336
    Abstract: There is provided a substantially fully dense powdered metal composite comprising a highly conductive metal or metal alloy matrix having dispersed therein discrete microparticles of a refractory metal oxide and discrete macroparticles of a mechanical or physical property-conferring additive material. The respective components undergo minimal alloying or interdispersion because sintering is not utilized in forming the composite. These composites are characterized by high thermal or electrical conductivity and a desired property (controlled thermal expansion, high strength, wear and arc erosion resistance, or magnetic) attributable to the composite forming material, like refractory metal, alloy, or compound. The composites are useful in forming lead frames for integrated circuit chips, electric lamp lead wires, electrical contact members, and discrete component leads.
    Type: Grant
    Filed: June 17, 1988
    Date of Patent: March 12, 1991
    Assignee: SCM Metal Products, Inc.
    Inventors: Anil Nadkarni, Prasan K. Samal, James E. Synk
  • Patent number: 4983572
    Abstract: A superconductive body of an oxidic superconductive material having good mechanical properties is characterized in that the oxidic material forms a matrix through which finely divided particles are mixed at least the surface of which consists of a metal or a metal alloy. Particles in the form of fibres are preferably used and the surface of the particles consists of silver or gold.
    Type: Grant
    Filed: August 25, 1988
    Date of Patent: January 8, 1991
    Assignee: U.S. Philips Corporation
    Inventor: Gijsbertus De With
  • Patent number: 4981643
    Abstract: A method for improved HIPing of filament reinforced metal matrix composite samples is disclosed. The method departs from conventional HIPing practice in that it does not rely on the heating of the HIPing gas in order to increase pressure. Rather, the temperature of the article and of the HIPing gas is first to the HIPing temperature and the pressure of the gas and the pressure on the sample is then raised to the HIPing pressure. Benefits are derived in that a lower level of filament fracture results.
    Type: Grant
    Filed: June 29, 1990
    Date of Patent: January 1, 1991
    Assignee: General Electric Company
    Inventors: Paul A. Siemers, Stephen F. Rutkowski
  • Patent number: 4981511
    Abstract: A compound or composite powder which includes metallic or ceramic whiskers embedded in a metallic or ceramic matrix as host material, the whiskers have a length between 5.times.10.sup.-6 m and 2.times.10.sup.-4 m and diameters between 2.times.10.sup.-7 m and 1.times.10.sup.-5 m, and are embedded in the matrix with a volume proportion of whisker content between 1 to 50% (by volume), the reference being to a pore-free compacted compound/composite material; the whiskers being made of SiC, Si.sub.-3 N.sub.-4, Al.sub.-2 O.sub.-3 or ZrO.sub.-2 and are embedded in a ceramic matrix being Al.sub.-2 O.sub.-3, Al.sub.-2 O.sub.-3 +from 5 to 40% ZrO.sub.-2 +from 0 to 5% Y.sub.-2 O.sub.-3 or ZrO.sub.-2 with 3 to 15% Y.sub.-2 O.sub.-3 or Si-nitride or Si-carbide. Alternatively the whiskers are made of Si.sub.-3 N.sub.-4, Al.sub.-2 O.sub.-3, ZrO.sub.-2 or W and the matrix is made of W, Mo, Fe, Ni, Co, Cu or an alloy thereof.
    Type: Grant
    Filed: May 16, 1988
    Date of Patent: January 1, 1991
    Assignee: Dornier System GmbH
    Inventors: Rainer Schmidberger, Tilman Haug, Reinhard Marquardt, Juergen Bocan
  • Patent number: 4966811
    Abstract: A moulded body having an inner support matrix is enveloped at least partially with a plastic envelope making up the mould. The support matrix is formed at least partially from metal wire pieces and/or metal chips, which are compression moulded and sintered.
    Type: Grant
    Filed: August 23, 1989
    Date of Patent: October 30, 1990
    Assignee: Schaebische Huettenwerke GmbH
    Inventor: Hans A. Haerle
  • Patent number: 4961383
    Abstract: An armor penetrating projectile having a matrix of iron or a steel alloy ch has a Rockwell C hardness of from about 40 to about 60 and a density of from about 99.5 to 100 percent, the matrix being reinforced with wires of a heavy metal such as tungsten, molybdenum, tantalum, or alloys of these metals.
    Type: Grant
    Filed: June 26, 1981
    Date of Patent: October 9, 1990
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steven G. Fishman, Alexander G. Rozner, Raymond C. Wiley, William N. Wishard
  • Patent number: 4954170
    Abstract: High density compacts are made by providing a compactable particulate combination of Class 1 metals selected from at least one of Ag, Cu and Al, with material selected from at least one of CdO, SnO, SnO.sub.2, C, Co, Ni, Fe, Cr, Cr.sub.3 C.sub.2, Cr.sub.7 C.sub.3, W, WC, W.sub.2 C, WB, Mo, Mo.sub.2 C, MoB, Mo.sub.2 B, TiC, TiN, TiB.sub.2, Si, SiC, Si.sub.3 N.sub.4, usually by mixing powders of each, step (1); uniaxially pressing the powders to a density of from 60% to 95%, to provide a compact, step (2); hot densifying the compact at a pressure between 352 kg/cm.sup.2 (5,000 psi) and 3,172 kg/cm.sup.2 (45,000 psi) and at a temperature from 50.degree. C. to 100.degree. C. below the melting point or decomposition point of the lower melting component of the compact, to provide densification of the compact to over 97% of theoretical density; step (3); and cooling the compact, step (4).
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 4, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Maurice G. Fey, Natraj C. Iyer, Alan T. Male, William R. Lovic
  • Patent number: 4943319
    Abstract: Disclosed is herein a process for producing a molding product of Al or Cu composite material, which comprises admixing a functional material capable of improving the desired property of the composite material by dispersion into a matrix to a powder of metal selected from Al, Cu or alloys thereof constituting the matrix, charging the dust directly into a molding die, applying cold dust core molding under the pressure of greater than 5 t/cm.sup.2 of facial pressure and applying a diffusing treatment at a temperature higher than 300.degree. C.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: July 24, 1990
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Masahiro Yanagawa, Mutsumi Abe, Kenichi Aota, Takashi Motoda
  • Patent number: 4941918
    Abstract: A magnesium-based composite material having improved mechanical strength, and in particular an improved modulus of elasticity, and a relatively low density. The material is provided by pressing and sintering a mixture of magnesium or magnesium-based alloy particles or a particulate combination of magnesium particles and particles of one or more additional metals, with a reinforcement additive of boron, or boron-coated B.sub.4 C, Si.sub.3 N.sub.4, SiC, Al.sub.2 O.sub.3 or MgO particles.
    Type: Grant
    Filed: December 12, 1988
    Date of Patent: July 17, 1990
    Assignee: Fujitsu Limited
    Inventors: Eiji Horikoshi, Tsutomu Iikawa, Takehiko Sato
  • Patent number: 4940490
    Abstract: An improved flaked tantalum powder and process for making the flaked powder are disclosed. The powder is characterized by having a Scott density greater than about 18 g/in.sup.3 and preferably at least about 90% of the flake particles having no dimension greater than about 55 micrometers. Agglomerates of the flaked tantalum powder, provide improved flowability, green strength and presssing characteristics compared to conventional flaked tantalum powders. The improved flaked tantalum powder can be made by preparing a flaked tantalum and then reducing the flake size until a Scott density greater than about 18 g/in.sup.3 is achieved. The invention also provides pellets and capacitors prepared from the above-described flaked tantalum powder.
    Type: Grant
    Filed: June 21, 1988
    Date of Patent: July 10, 1990
    Assignee: Cabot Corporation
    Inventors: James A. Fife, Marlyn F. Getz
  • Patent number: 4915734
    Abstract: The present invention relates to a cemented carbonitride alloy in which the toughness has been improved by the incorporation in the structure of whiskers of nitrides, carbides and/or carbonitrides of titanium, zirconium and/or hafnium.
    Type: Grant
    Filed: April 26, 1988
    Date of Patent: April 10, 1990
    Assignee: Sandvik AB
    Inventors: Nils G. L. Brandt, Zeljka D. Senesan
  • Patent number: 4915733
    Abstract: Metal powder agglomerates of individual particles comprising (i) more than 70% by weight of one or more metals selected from the group consisting of the elements molybdenum, rhenium and tungsten and (ii) one or more binder metals selected from the group consisting of iron, cobalt, nickel, copper, silver, gold, palladium, platinum, rhodium, chromium and rhenium, wherein the individual particles have grain sizes of less than 2 .mu.m and all the metal particles lie side by side in uniform random distribution are useful as the powder required for producing shaped, sintered articles in a powder metallurgical preparation.
    Type: Grant
    Filed: January 19, 1989
    Date of Patent: April 10, 1990
    Assignee: Hermann C. Starck Berlin GmbH & Co. KG
    Inventors: Heinz-Eckert Schutz, Bernhard Szesny, Bruno E. Krismer
  • Patent number: 4844754
    Abstract: High energy product, magnetically anisotropic permanent magnets are produced by hot working overquenched or fine grained, melt-spun materials comprising iron, neodymium and/or praseodymium, and boron to produce a fully densified, fine grained body that has undergone plastic flow.
    Type: Grant
    Filed: March 17, 1986
    Date of Patent: July 4, 1989
    Assignee: General Motors Corporation
    Inventor: Robert W. Lee
  • Patent number: 4797155
    Abstract: A metal matrix composite is produced by plastically deforming a metal powder, either or after blending the powder with ceramic fibers, and compacting the mixture at elevated temperatures to achieve substantially full density. Imparting strain energy to the metal allows reduction of the compaction temperature to eliminate reaction between the fibers and the metal or degradation of the fibers. Silicon nitride fibers are thermodynamically superior for use in aluminum or titanium metal matrix composites, since silicon nitride fibers are more stable at the temperatures required for full compaction. Secondary phase reactions are avoided.
    Type: Grant
    Filed: February 27, 1987
    Date of Patent: January 10, 1989
    Assignee: The Boeing Company
    Inventor: K. Bhagwan Das
  • Patent number: 4776885
    Abstract: Short, fine fibers having certain aspect ratios and generally triangular cross-section are mixed with particulate material whereby the fibers form a three dimensional network and the mixture is sintered to provide composites containing scattered and enveloped particulate material, which composites have utility as self-lubricating materials or grinding materials.
    Type: Grant
    Filed: May 5, 1987
    Date of Patent: October 11, 1988
    Assignees: Takeo Nakagawa, Shinsin International Development Corporation
    Inventors: Takeo Nakagawa, Kiyoshi Suzuki, Kenzo Hanawa
  • Patent number: 4757036
    Abstract: Homogeneous, nonporous ceramic fibers containing at least one magnetically-unaligned, microcrystaline transition metal oxide spinel phase. The ceramic fibers may be used in polymeric, ceramic and metallic composites. Said ceramic spinel is produced by dispersing soluble inorganic and transition metal compounds in an aqueous mixture, concentrating to produce a viscous concentrate, shaping into the desired article, gelling the shaped article, and heating to produce the transition metal spinel article. Beads, bubbles, flakes, microspheres, films and granules may be made as well as fibers.
    Type: Grant
    Filed: September 14, 1987
    Date of Patent: July 12, 1988
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: David R. Kaar, Harold G. Sowman
  • Patent number: 4747873
    Abstract: A frictional material is disclosed, which is characterized in that, with the metal-containing composite material infiltrated with metal into the pore portions of composite comprising carbon material reinforced with carbon fibers, the porosity of said composite is adjusted to 5 to 15 vol. % and a metal or an alloy with a melting point of 125.degree. to 1100.degree. C. is infiltrated in amounts of 3 to 10 vol. %.
    Type: Grant
    Filed: September 11, 1987
    Date of Patent: May 31, 1988
    Assignees: Akebono Brake Industry Co., Ltd., Akebono Research & Development Centre Ltd.
    Inventor: Nobuo Kamioka
  • Patent number: 4707330
    Abstract: A metallic composite material and nuclear components such as fuel cladding, rod guide thimbles, grids and channels made therefrom. The metallic composite material comprises 90-60 volume percent of a metal matrix of zirconium or a zirconium alloy containing homogeneously incorporated, throughout the matrix, 10-40 volume percent of silicon carbide whiskers.
    Type: Grant
    Filed: January 8, 1985
    Date of Patent: November 17, 1987
    Assignee: Westinghouse Electric Corp.
    Inventor: Harry M. Ferrari
  • Patent number: 4673435
    Abstract: An alumina composite body comprising a plurality of elongated alumina elements oriented in random directions and interconnected so as to constitute a porous matrix, and aluminum and silicon tightly filling the porous matrix; and a method of manufacturing an alumina composite body comprising reacting a body of silica, or a body of a silicon compound such as silicon carbide or silicon nitride which has been at least partially oxidized to produce silica, with aluminum so as to change the silica into alumina.
    Type: Grant
    Filed: April 24, 1986
    Date of Patent: June 16, 1987
    Assignee: Toshiba Ceramics Co., Ltd.
    Inventors: Masayoshi Yamaguchi, Kazunori Meguro, Shuitsu Matsuo, Yasumi Sasaki
  • Patent number: 4664704
    Abstract: This composite material includes reinforcing hybrid fiber mixture material in a matrix of metal which is aluminum, magnesium, copper, zinc, lead, tin, or an alloy having these as principal components. The hybrid fiber mixture is a mixture of crystalline alumina-silica fiber material and mineral fiber material. The crystalline alumina-silica fiber material has as principal components 35% to 80% by weight of Al.sub.2 O.sub.3 and 65% to 20% by weight of SiO.sub.2, with a content of other substances of less than or equal to 10% by weight, and with the percentage of mullite being greater than or equal to 15% by weight, and with the percentage of non fibrous particles with diameters greater than 150 microns being less than or equal to 5% by weight. And the mineral fiber material has as principal components SiO.sub.2, CaO, and Al.sub.2 O.sub.3, the content of MgO being less than or equal to 10% by weight, the content of Fe.sub.2 O.sub.
    Type: Grant
    Filed: May 16, 1985
    Date of Patent: May 12, 1987
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tadashi Dohnomoto, Masahiro Kubo
  • Patent number: 4648902
    Abstract: A process for the production of a reinforced metal plate comprising forming a slurry of metal coated carbon fibers, binder fibers and metal powder, laying down a mat from said slurry, drying the resultant mat and then sintering said, is disclosed. The dried sintered mat may be made stronger by contacting the mat with a silicate before sintering.
    Type: Grant
    Filed: October 21, 1983
    Date of Patent: March 10, 1987
    Assignee: American Cyanamid Company
    Inventor: Robert D. Giglia
  • Patent number: 4649022
    Abstract: This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.
    Type: Grant
    Filed: April 23, 1984
    Date of Patent: March 10, 1987
    Assignee: Ford Motor Company
    Inventors: Ragnar P. Tischer, Walter L. Winterbottom, Halina S. Wroblowa
  • Patent number: 4615733
    Abstract: A composite material, including reinforcing fiber material with principal components SiO.sub.2 and/or CaO and/or Al.sub.2 O.sub.3, and with a Mg content by weight of between about 0% and about 10%, an Fe.sub.2 O.sub.3 content by weight of between about 0% and about 5%, and a content by weight of other inorganic substances of between about 0% and about 10%, and consisting essentially of mineral fibers and non fibrous particles to a total percentage of not more than about 20% by weight, the weight percentage of the part of the non fibrous particles which have a diameter of greater than or equal to about 150 microns being between about 0% and about 7%. Also, the composite material includes a matrix metal selected from the group consisting of aluminum, magnesium, copper, zinc, lead, tin, and alloys having these as principal components, the volume proportion of the mineral fibers being in the range of from about 4% to about 25%.
    Type: Grant
    Filed: April 2, 1985
    Date of Patent: October 7, 1986
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kubo, Tadashi Dohnomoto, Atsuo Tanaka, Yoshiaki Tatematsu
  • Patent number: 4592780
    Abstract: A process for producing a flat product such as a coin includes the steps of forming a slurry comprising a suspension of particulate material in a film-forming cellulose derivative, depositing a quantity of this slurry onto a support surface, drying the slurry to form a self-supporting flat product, and removing the dried product from the support surface. The particulate material essentially comprises metallic particles and matter whose chemical composition and physical properties differ from those of the metallic particles such that the added matter is not or only partially taken into solution with the metallic particles on heat treatment of the product whereby the presence of the added matter can readily be detected following such heat treatment.
    Type: Grant
    Filed: April 4, 1985
    Date of Patent: June 3, 1986
    Assignee: Mixalloy Limited
    Inventors: Idwal Davies, John L. Fage
  • Patent number: 4582534
    Abstract: Hollow metal microspheres are made from film forming metal compositions and are used to make superior high strength light weight structures, improved insulating materials and insulating systems, or the microspheres can be used as filler materials in plastics, in plastic foam compositions, in rubber and rubber compositions and in metal compositions. A thin metal coating can be deposited on the inner wall surface of the microspheres. The hollow metal microspheres can also be made in the form of filamented metal microspheres in which a thin metal filament connects adjacent microspheres. The microspheres are characterized by being free of latent solid or liquid blowing gas materials or gases and the walls of the microspheres are substantially free of holes, relatively thin walled portions or sections and bubbles. Masses of the hollow microspheres and shaped forms of or containing the hollow microspheres are also described.
    Type: Grant
    Filed: September 15, 1983
    Date of Patent: April 15, 1986
    Inventor: Leonard B. Torobin
  • Patent number: 4568389
    Abstract: Shaped forms or formed masses of hollow metal microspheres are described. The hollow metal microspheres are made from film forming metal compositions and are used to make superior high strength light weight structures, improved insulating materials and insulating systems. A thin metal coating can be deposited on the inner wall surface of the microspheres. The hollow metal microspheres can also be made in the form of filamented metal microspheres in which a thin metal filament connects adjacent microspheres. The microspheres are characterized by being free of latent solid or liquid blowing gas materials or gases and the walls of the microspheres are substantially free of holes, relatively thin walled portions or sections and bubbles.
    Type: Grant
    Filed: September 15, 1983
    Date of Patent: February 4, 1986
    Inventor: Leonard B. Torobin
  • Patent number: 4555268
    Abstract: A method for improving the handling characteristics of a flaked tantalum powder composition comprising heat treating the flaked powder component of the composition in order to pre-agglomerate the flaked component prior to mixing it with the granular tantalum powder component of the composition.
    Type: Grant
    Filed: December 18, 1984
    Date of Patent: November 26, 1985
    Assignee: Cabot Corporation
    Inventor: Marlyn F. Getz