Nonmetal Is Elemental Carbon(c) Only Patents (Class 75/243)
  • Patent number: 8541336
    Abstract: A tin-carbon compound that is a reaction product of tin and carbon, wherein the tin and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the tin when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8491695
    Abstract: An iron-base sintered part having high density and totally enhanced strength, toughness and abrasion resistance, a manufacturing method of the iron-base sintered part, and an actuator are disclosed. The iron-base sintered part is formed by an iron-nickel-molybdenum-carbon-based sintered alloy, has density of 7.25 g/cm3 or more, and has a carburization quenched structure. A method for manufacturing the iron-base sintered part includes a molding process of charging a raw mixture powder of an iron-nickel-molybdenum-based metal powder and a carbon-based powder into a cavity of a molding die and compressing the raw powder in the cavity to form a consolidation body, a sintering process of sintering the consolidation body at a sintering temperature to form a sintered alloy, and a carburization quenching process of heating the sintered alloy in a carburization atmosphere and quenching the heated alloy.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: July 23, 2013
    Assignee: JTEKT Corporation
    Inventors: Toshiyuki Saito, Takumi Mio, Koji Nishi, Hajime Fukami, Kentaro Yamauchi, Hiroyuki Yao, Masayuki Yamamoto, Hideki Yamazaki
  • Publication number: 20130125475
    Abstract: The present invention relates to tungsten rhenium compounds and composites and to methods of forming the same. Tungsten and rhenium powders are mixed together and sintered at high temperature and high pressure to form a unique compound. An ultra hard material may also be added. The tungsten, rhenium, and ultra hard material are mixed together and then sintered at high temperature and high pressure.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: Smith International, Inc.
  • Publication number: 20130091986
    Abstract: A hard phase forming alloy powder, for forming a hard phase dispersed in a sintered alloy, consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities. A production method, for a wear resistant sintered alloy, includes preparing a matrix forming powder, the hard phase forming alloy powder, and a graphite powder. The production method further includes mixing 15 to 45% of the hard phase forming alloy powder and 0.5 to 1.5% of the graphite powder with the matrix forming powder into a raw powder. The production method further includes compacting the raw powder into a green compact having a predetermined shape and includes sintering the green compact. A wear resistant sintered alloy exhibits a metallic structure in which 15 to 45% of a hard phase is dispersed in a matrix. The hard phase consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities.
    Type: Application
    Filed: December 6, 2012
    Publication date: April 18, 2013
    Applicant: HITACHI POWDERED METALS CO., LTD.
    Inventor: HITACHI POWDERED METALS CO., LTD.
  • Publication number: 20130084203
    Abstract: An iron-based sintered sliding member consists of, by mass %, 0.1 to 10% of Cu, 0.2 to 2.0% of C, 0.03 to 0.9% of Mn, 0.52 to 6.54% of S, and the balance of Fe and inevitable impurities. The iron-based sintered sliding member satisfies the following First Formula in which [S %] represents mass % of S and [Mn %] represents mass % of Mn in the overall composition. The iron-based sintered sliding member exhibits a metallic structure in which pores and sulfide particles are dispersed in the matrix that includes a martensite structure at not less than 50% by area ratio in cross section. The sulfide particles are dispersed at 3 to 30 vol. % with respect to the matrix. [S %]=0.6×[Mn %]+0.5 to 6.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 4, 2013
    Applicant: HITACHI POWDERED METALS CO., LTD.
    Inventor: HITACHI POWDERED METALS CO., LTD.
  • Patent number: 8398739
    Abstract: A composition comprising water atomised prealloyed iron-based steel powder is provided which steel powder comprises by weight-%: 0.2-1.5 Cr, 0.05-0.4 V, 0.09-0.6 Mn, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, the balance being iron. A method of forming a sintered component, and component additionally are provided.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 19, 2013
    Assignee: Hoganas AB (Publ)
    Inventors: Sven Bengtsson, Anna Larsson
  • Publication number: 20130047784
    Abstract: A powder metal compact is disclosed. The powder metal compact includes a cellular nanomatrix comprising a nanomatrix material. The powder metal compact also includes a plurality of dispersed particles comprising a particle core material that comprises an Al—Cu—Mg, Al—Mn, Al—Si, Al—Mg, Al—Mg—Si, Al—Zn, Al—Zn—Cu, Al—Zn—Mg, Al—Zn—Cr, Al—Zn—Zr, or Al—Sn—Li alloy, or a combination thereof, dispersed in the cellular nanomatrix.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventor: Zhiyue Xu
  • Publication number: 20130047785
    Abstract: A powder metal compact is disclosed. The powder metal compact includes a cellular nanomatrix comprising a nanomatrix material. The powder metal compact also includes a plurality of dispersed particles comprising a particle core material that comprises an Mg—Zr, Mg—Zn—Zr, Mg—Al—Zn—Mn, Mg—Zn—Cu—Mn or Mg—W alloy, or a combination thereof, dispersed in the cellular nanomatrix.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventor: Zhiyue Xu
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Publication number: 20130052472
    Abstract: A powder metal compact is disclosed. The powder metal compact comprises a cellular nanomatrix comprising a metallic nanomatrix material. The powder metal compact also comprises a plurality of dispersed particles comprising a metallic particle core material dispersed in the cellular nanomatrix, the particle core material comprising a nanostructured material.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventor: Zhiyue Xu
  • Patent number: 8349759
    Abstract: A metal-carbon composition including a metal and carbon, wherein the metal and the carbon form a single phase material, characterized in that the carbon does not phase separate from the metal when the single phase material is heated to a melting temperature, the metal being selected from the group consisting of gold, silver, tin, lead, and zinc.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: January 8, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Publication number: 20130000982
    Abstract: A hard composite composition may comprise a binder and a polymodal blend of matrix powder. The polymodal blend of matrix powder may have at least one first local maxima at a particle size of about 0.5 nm to about 30 ?m, at least one second local maxima at a particle size of about 200 ?m to about 10 mm, and at least one local minima between a particle size of about 30 ?m to about 200 ?m that has a value that is less than the first local maxima.
    Type: Application
    Filed: December 23, 2011
    Publication date: January 3, 2013
    Inventor: Garrett T. Olsen
  • Patent number: 8317893
    Abstract: Methods, systems, and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 27, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 8298313
    Abstract: A cold-forming steel article which comprises an alloy that comprises carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten and optionally, niobium in certain concentrations, as well as up to about 0.4 wt. % of accompanying elements, remainder iron and contaminants. The article is formed by atomization of a melt and hot isostatic pressing of the resultant powder. The article exhibits a hardness of at least about 60 HRC and a toughness in terms of impact strength of higher than about 50 J. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 30, 2012
    Assignee: Boehler Edelstahl GmbH & Co KG
    Inventors: Gerhard Jesner, Devrim Caliskanoglu
  • Patent number: 8287615
    Abstract: A high-strength composition iron powder is prepared by mixing an iron base powder with 0.5 to 3.0 mass % of an Fe—Mn powder having a particle diameter of 45 ?m or less and a Mn content in the range of 60 to 90 mass %, 1.0 to 3.0 mass % of a Cu powder, 0.3 to 1.0 mass % of a graphite powder, and 0.4 to 1.2 mass % of a powder lubricant for die-forming while adjusting the ratio of the amount of Mn contained in the Fe—Mn powder to the amount of the Cu powder in the range of 0.1 to 1. The high-strength composition iron powder is press-formed and sintered at a temperature equal to or higher than the melting point of Cu to produce a high-strength sintered part having a tensile strength of 580 MPa or higher without using expensive alloying elements such as Ni and Mo.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 16, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Masaaki Sato, Satoshi Furuta, Takahiro Kudo, Takehiro Tsuchida
  • Patent number: 8257462
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 4, 2012
    Assignee: Federal-Mogul Corporation
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Publication number: 20120219450
    Abstract: A bonded metallurgical powder composition including: an iron-based powder having a weight average particle size in the range of 20-60 ?m, in an amount of at least 80 percent by weight of the composition, graphite powder in an amount between 0.15-1.0 percent by weight of the composition, a binding agent in an amount between 0.05-2.0 percent by weight of the composition, a flow agent in an amount between 0.001-0.2 percent by weight of the composition; wherein the graphite powder is bound to the iron-based powder particles by means of the binding agent, and wherein the powder composition has an apparent density of at least 3.10 g/cm3 and a hall flow rate of at most 30 s/50 g. Also, a method for producing a sintered component with improved strength from the inventive composition, as well as to a heat treated sintered component produced according to said method.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 30, 2012
    Applicant: HOGANAS AB (PUBL)
    Inventor: Mats Larsson
  • Patent number: 8231703
    Abstract: A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a “normal” substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: July 31, 2012
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Edward B. Ripley, Gerard M. Ludtka
  • Publication number: 20120177905
    Abstract: A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a “normal” substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.
    Type: Application
    Filed: May 25, 2005
    Publication date: July 12, 2012
    Inventors: Roland D. Seals, Edward B. Ripley, Gerard M. Ludtka
  • Patent number: 8216338
    Abstract: Disclosed is a composition for a bush-type bearing, a bush-type bearing manufactured using the composition, and a method of manufacturing the bush-type bearing. The bearing has excellent friction characteristics with a shaft made of iron (Fe) based material, and thus is able to increase the lubrication cycle of a lubricant. Further, the bearing has excellent hardness, and thus is able to prevent plastic deformation under high contact pressure.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: July 10, 2012
    Assignee: Doosan Infracore Co., Ltd.
    Inventors: Dong-Seob Shim, Chung-Rea Lee
  • Publication number: 20120121922
    Abstract: Disclosed herein is an engine 52, in particular a combustion engine or a jet-power unit, or an engine part 54, 56 made from metal, and in particular Al or Mg, or an alloy comprising one or more thereof. The engine or engine part is made from a compound material of said metal reinforced by nanoparticles, in particular CNT, wherein the reinforced metal has a microstructure comprising metal crystallites at least partly separated by said nanoparticles.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 17, 2012
    Inventors: Henning Zoz, Michael Dvorak, Horst Adams
  • Publication number: 20120107168
    Abstract: An iron-based sintered sliding member that contains no free cementite in its structure and is excellent in tribological property such as friction and wear, and a method of manufacturing that iron-based sintered sliding member are provided. To iron powder as a main component, 3-20 mass % alloy powder, which comprises 4-6 mass % manganese, 3-5 mass % iron, and copper as a remaining component, and 1-5 mass % carbon powder are blended, and mixed to obtain powder mixture. Then, the powder mixture is filled in a mold and compacted to make a green compact of a desired shape. This green compact is sintered at a temperature of 1000-1100 degrees Celsius for 60 minutes in a heating furnace whose inside is adjusted to be a neutral or reducing atmosphere.
    Type: Application
    Filed: May 24, 2010
    Publication date: May 3, 2012
    Applicant: OILES CORPORATION
    Inventor: Yasuhiro Shirasaka
  • Publication number: 20120103135
    Abstract: A powder metal composite is disclosed. The powder metal composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The compact also includes a plurality of dispersed particles comprising a particle core material that comprises Mg, Al, Zn or Mn, or a combination thereof, dispersed in the nanomatrix, the core material of the dispersed particles comprising a plurality a plurality of distributed carbon nanoparticles, and a bond layer extending throughout the nanomatrix between the dispersed particles. The nanomatrix powder metal composites are uniquely lightweight, high-strength materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Inventors: Zhiyue Xu, Soma Chakraborty, Gaurav Agrawal
  • Patent number: 8163060
    Abstract: The heat conductivity of an aluminum composite material containing a fibrous carbon material is enhanced. In order to realize this, a spark plasma sintered body having a fibrous carbon material compounded in a metal matrix powder of aluminum or the like is fabricated. At the time of fabrication, an aluminum powder serving as a matrix mother material is compounded with an Al alloy powder such as an Al-12Si powder having a melting point lower than the sintering temperature of the mother material. During the process of sintering the aluminum powder, the Al alloy powder is melted, whereby the heat conductivity between the aluminum powder particles and between the aluminum powder particle and the fibrous carbon material is improved.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 24, 2012
    Assignees: Sumitomo Precision Products Co., Ltd., Osaka Prefectural Government
    Inventors: Terumitsu Imanishi, Kazuaki Katagiri, Akiyuki Shimizu, Toyohiro Sato, Nobuhito Nakama, Atsushi Kakitsuji, Katsuhiko Sasaki
  • Publication number: 20120093676
    Abstract: Disclosed herein is a composite material comprising a metal and nanoparticles, in particular carbon nano tubes as well as a method of producing the same. A metal powder and the nanoparticles are processed by mechanical alloying, such as to form a composite comprising metal crystallites having an average size in the range of 1-100 nm, preferably 10 to 100 nm or in a range of more than 100 nm and up to 200 nm at least partly separated from each other by said nanoparticles.
    Type: Application
    Filed: January 28, 2010
    Publication date: April 19, 2012
    Applicant: Bayer International SA
    Inventors: Henning Zoz, Michael Dvorak, Horst Adams
  • Publication number: 20120079916
    Abstract: The reinforced particulate aluminum metal matrix composite for brakes is used to form a brake component, such as a brake rotor, a brake coupler or the like. The composite is formed from an aluminum metal matrix reinforced with ceramic particulates. The ceramic particulates have a particulate diameter between about 0.1 and 1.0 micrometers and form greater than about 10% by volume of the reinforced particulate aluminum metal matrix composite.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: AMRO M. AL-QUTUB, MIRZA M. BAIG
  • Publication number: 20120082584
    Abstract: A sintered material for valve guides consists of, by mass %, 0.01 to 0.3% of P, 1.3 to 3% of C, 1 to 4% of Cu, and the balance of Fe and inevitable impurities. The sintered material exhibits a metallic structure made of pores and a matrix. The matrix is a mixed structure of a pearlite phase, a ferrite phase, an iron-phosphorus-carbon compound phase, and a copper phase, and a part of the pores including graphite that is dispersed therein. The iron-phosphorus-carbon compound phase is dispersed at 3 to 25% by area ratio, and the copper phase is dispersed at 0.5 to 3.5% by area ratio, with respect to a cross section of the metallic structure, respectively.
    Type: Application
    Filed: September 23, 2011
    Publication date: April 5, 2012
    Applicant: HITACHI POWDERED METALS CO., LTD.
    Inventors: Hiroki FUJITSUKA, Hideaki KAWATA
  • Patent number: 8110020
    Abstract: An annealed pre-alloyed water atomised iron-based powder suitable for the production of pressed and sintered components having high wear resistance is provided. The iron-based powder comprises 10-below 18% by weight of Cr, 0.5-5% by weight of each of at least one of Mo, W, V and Nb, and 0.5-2%, preferably 0.7-2% and most preferably 1-2% by weight of C. The powder has a matrix comprising less than 10% by weight of Cr, and comprises large M23C6-type carbides in combination with M7C3-type carbides. A method for production of the iron-based powder, a method for producing a pressed and sintered component having high wear resistance, and a component having high wear resistance are provided.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: February 7, 2012
    Assignee: Höganäs AB (PUBL)
    Inventors: Ola Bergman, Paul Dudfield Nurthen
  • Publication number: 20120024109
    Abstract: A powder metal composite is disclosed. The powder metal composite includes a substantially-continuous, cellular nanomatrix comprising a nanomatrix material. The composite also includes a plurality of dispersed first particles each comprising a first particle core material that comprises Mg, Al, Zn or Mn, or a combination thereof, dispersed in the nanomatrix; a plurality of dispersed second particles intermixed with the dispersed first particles, each comprising a second particle core material that comprises a carbon nanoparticle; and a solid-state bond layer extending throughout the nanomatrix between the dispersed first and second particles. The nanomatrix powder metal composites are uniquely lightweight, high-strength materials that also provide uniquely selectable and controllable corrosion properties, including very rapid corrosion rates, useful for making a wide variety of degradable or disposable articles, including various downhole tools and components.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Zhiyue Xu, Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Publication number: 20110318214
    Abstract: A water atomised prealloyed chromium-free, iron-based steel powder is provided which comprises by weight-%: 0.05-0.4 V, 0.09-0.3 Mn, less than 0.1 Cr, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, and less than 0.5 of unavoidable impurities, with the balance being iron.
    Type: Application
    Filed: March 15, 2010
    Publication date: December 29, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventor: Sven Bengtsson
  • Publication number: 20110317949
    Abstract: A sintered metal bearing is obtained by compression-molding of a raw-material powder containing at least a Cu powder, an SUS powder, and a pure Fe powder and thereafter sintering a compression-molded body at a predetermined temperature.
    Type: Application
    Filed: March 2, 2010
    Publication date: December 29, 2011
    Applicant: NTN CORPORATION
    Inventors: Fuyuki Ito, Kazuo Okamura, Kenji Hibi
  • Publication number: 20110284792
    Abstract: The present invention features a steel-base sintering alloy having a high wear-resistance for a valve seat of an engine. In preferred embodiments, the steel-base sintering alloy may include a chief element of Ferrum (Fe); and a powder-alloy which are composed of Carbon (C) of 0.6˜1.2 wt %, Nickel (Ni) of 1.0˜3.0 wt %, Cobalt (Co) of 15.0˜25.0 wt %, Chrome (Cr) of 3.0˜9.0 wt %, Molybdenum (Mo) of 8.0˜15.0 wt %, Tungsten (W) of 1.0˜4.0 wt %, Manganese (Mn) of 0.5˜2.0 wt %, and Calcium (Ca) of 0.1˜0.5 wt %.
    Type: Application
    Filed: October 18, 2010
    Publication date: November 24, 2011
    Applicants: KOREA SINTERED METAL CO., LTD., HYUNDAI MOTOR COMPANY
    Inventors: Jong Myung Kim, Ki Bum Kim, Dong Jin Kang, Hyung Oh Ban, Hong Kil Baek, Won-Seog Koo, Jong-Kwan Park, Sung-Tae Choi
  • Publication number: 20110252922
    Abstract: A method is provided for producing a diffusion alloyed powder consisting of an iron or iron-based core powder having particles of an alloying powder containing Cu and Ni bonded to the surface of the core particles, comprising providing a unitary alloying powder capable of forming particles of a Cu and Ni containing alloy, mixing the unitary alloying powder with the core powder, and heating the mixed powders in a non-oxidizing or reducing atmosphere to a temperature of 500-1000° C. during a period of 10-120 minutes to convert the alloying powder into a Cu and Ni containing alloy, so as to diffusion bond particles of the Cu and Ni alloy to the surface of the iron or iron-based core powder. The alloying powder may be a Cu and Ni alloy, oxide, carbonate or other suitable compound that on heating will form a Cu and Ni alloy.
    Type: Application
    Filed: December 16, 2009
    Publication date: October 20, 2011
    Inventor: Mats Larsson
  • Patent number: 8028771
    Abstract: Polycrystalline diamond constructions include a diamond body comprising a matrix phase of bonded together diamond crystals formed at high pressure/high temperature conditions with a catalyst material. The sintered body is treated to remove the catalyst material disposed within interstitial regions, rendering it substantially free of the catalyst material used to initially sinter the body. Accelerating techniques can be used to remove the catalyst material. The body includes an infiltrant material disposed within interstitial regions in a first region of the construction. The body includes a second region adjacent the working surface and that is substantially free of the infiltrant material. The infiltrant material can be a Group VIII material not used to initially sinter the diamond body. A metallic substrate is attached to the diamond body, and can be the same or different from a substrate used as a source of the catalyst material used to initially sinter the diamond body.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: October 4, 2011
    Assignee: Smith International, Inc.
    Inventors: Madapusi K. Keshavan, Anthony Griffo, Yuelin Shen, Youhe Zhang
  • Publication number: 20110212339
    Abstract: The metallurgical composition includes a main particulate metallic material, for example iron or nickel, and at least one alloy element for hardening the main metallic material, which form a structural matrix; a particulate solid lubricant, such as graphite, hexagonal boron nitride or mixture thereof; and a particulate alloy element which is capable of forming, during the sintering of the composition conformed by compaction or by injection molding, a liquid phase, agglomerating the solid lubricant in discrete particles. The composition may include an alloy component to stabilize the alpha-iron matrix phase, during the sintering, in order to prevent the graphite solid lubricant from being solubilized in the iron. The invention further refers to a self-lubricating sintered product, obtained from the composition, and to the process for obtaining said product.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 1, 2011
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Cristiano Binder, Gisele Hammes, Moises Luiz Parucker, Waldyr Ristow Junior
  • Patent number: 7998230
    Abstract: A multi-metal powder, in particular for producing diamond tools comprises iron copper, cobalt and molybdenum whose contents are expressed in the following mass percentages: Fe+Cu+Co+Mo=98 mass %, the rest being oxygen and production impurities, wherein 15%=Cu=35%, 0.03=Mo/(Co+Fe+Mo)=0.10, —Fe/Co=2. A sintered compact is obtained by hot compaction of said multi-metal powder, for example, in the form of a diamond cutting tool.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 16, 2011
    Assignee: Eurotungstene Poudres
    Inventors: Maxime Bonneau, Jean-François Lartigue, Thierry Commeau, Christian Huet
  • Patent number: 7988758
    Abstract: Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: August 2, 2011
    Assignee: Nano Materials International Corporation
    Inventors: Sion M. Pickard, James C. Withers, Raouf O. Loutfy
  • Publication number: 20110103995
    Abstract: A pre-alloyed iron-based powder is provided including small amounts of alloying elements which make possible a cost efficient manufacture of sintered parts. The pre-alloyed iron-based powder comprises 0.2-1% by weight of Cr, 0.05-0.3% by weight of Mo, 0.1-1% by weight of Ni, 0.09-0.3% by weight of Mn, 0.01% by weight or less of C, less than 0.25% by weight of O, and less than 1% by weight of inevitable impurities, the balance being iron.
    Type: Application
    Filed: June 5, 2009
    Publication date: May 5, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventors: Alexander Klekovkin, David Milligan, Nagarjuna Nandivada
  • Publication number: 20110091344
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 21, 2011
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Publication number: 20110020163
    Abstract: The present invention relates to a super-hard enhanced hard-metal comprising particulate hard material and a binder and at least one formation, the formation comprising a core cluster and a plurality of satellite clusters, spaced from, surrounding and smaller than the core cluster, and the core cluster and satellite clusters each comprising a plurality of contiguous super-hard particles.
    Type: Application
    Filed: April 15, 2009
    Publication date: January 27, 2011
    Inventor: Roger William Nigel Nilen
  • Publication number: 20110000336
    Abstract: The heat conductivity of an aluminum composite material containing a fibrous carbon material is enhanced. In order to realize this, a spark plasma sintered body having a fibrous carbon material compounded in a metal matrix powder of aluminum or the like is fabricated. At the time of fabrication, an aluminum powder serving as a matrix mother material is compounded with an Al alloy powder such as an Al-12Si powder having a melting point lower than the sintering temperature of the mother material. During the process of sintering the aluminum powder, the Al alloy powder is melted, whereby the heat conductivity between the aluminum powder particles and between the aluminum powder particle and the fibrous carbon material is improved.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 6, 2011
    Applicants: SUMITOMO PRECISION PRODUCTS CO., LTD., Osaka Prefectural Government
    Inventors: Terumitsu Imanishi, Kazuaki Katagiri, Akiyuki Shimizu, Toyohiro Sato, Nobuhito Nakama, Atsushi Kakitsuji, Katsuhiko Sasaki
  • Publication number: 20100316521
    Abstract: A water atomised prealloyed iron-based steel powder is provided which comprises by weight-%: 0.4-2.0 Cr, 0.1-0.8 Mn, less than 0.1 V, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, and the balance being iron.
    Type: Application
    Filed: December 18, 2008
    Publication date: December 16, 2010
    Applicant: HOGANAS AB (PUBL)
    Inventors: Ola Litström, Sven Bengtsson, Robert Frykholm, Ola Bergman
  • Publication number: 20100303663
    Abstract: The present invention relates to a porous lightweight iron and a method for preparing the same, and more particularly to a porous lightweight iron having decreased weight due to pores formed therein while having a strength similar to that of existing steel products; and a method for preparing a porous lightweight iron having desired properties or various properties according to intended use. As described above in detail, according to the present invention, the thickness, weight and strength of lightweight iron to be produced, can be controlled, thus making it possible to prepare porous lightweight iron having desired properties by controlling the sintering temperature during the preparation process, the mixing ratio of diamond or silicon carbide and the mixing ratio of raw materials.
    Type: Application
    Filed: December 1, 2008
    Publication date: December 2, 2010
    Inventor: Se-Lin Lee
  • Publication number: 20100279138
    Abstract: The present invention relates to a method for producing diamond-metal composites comprising mixing diamond particles with metal-filler particles forming a diamond/metal-filler mixture, forming a green body of the diamond/metal-filler mixture, optionally green machining the green body to a work piece before or after pre-sintering by heating the green body to a temperature ?500° C., infiltrating the green body or the work piece with one or more wetting elements or infiltrating the green body or the work piece with one or more wetting alloys, which infiltration step being carried out under vacuum or in an inert gas atmosphere at a pressure ?200 Bar. The invention relates further to a green body, a diamond metal composite, and use of the diamond metal composite.
    Type: Application
    Filed: October 30, 2008
    Publication date: November 4, 2010
    Applicant: Alfa Laval Corporate AB
    Inventor: Jie Zheng
  • Patent number: 7799111
    Abstract: The invention relates to a thermal spray feedstock composition that employs free flowing agglomerates formed from (a) a ceramic component that sublimes,(b) a metallic or semi-conductor material that does not sublime and (c) a binder. The invention also relates to a method for preparing the agglomerates and a method for preparing ceramic containing composite structures from the agglomerates.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: September 21, 2010
    Assignee: Sulzer Metco Venture LLC
    Inventors: David S. Gollob, Thomas H. Piquette, James Derby, Omar Basil Al-Sabouni, Richard Karl Schmid, Jacobus Cornelis Doesburg
  • Patent number: 7767113
    Abstract: A method of manufacturing a metal-graphite brush material for a motor, which allows high-density formation of copper particles on the surfaces of graphite particles. The method: attaches copper complex to graphite particles; heat-treats the graphite particles attached with the copper particles, thereby to pyrolyze the copper complex to form copper particles on the surfaces of the graphite particles; forms the graphite particles having the copper particles formed thereon, together with a resin, into a formed product; and reduction-sinters the formed product under a reducing atmosphere to pyrolyze the resin, thereby to form a sintered body and also to reduce copper oxide formed in surface layers of the copper particles during the heat-treating.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: August 3, 2010
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Hiroshi Kobayashi
  • Publication number: 20100143620
    Abstract: An article coated with a highly durable, wetting resistant coating is provided. The article comprises a coating that comprises a cermet material. The cermet material includes a nickel-bearing metal matrix and a phase disposed within the matrix. The phase includes an anion moiety, for example nitrogen, carbon, or boron; and a cation moiety, for example chromium, zirconium, titanium, vanadium, hafnium, niobium, or tantalum. The phase is present in the cermet at a level of at least about 5 volume %.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Leonardo Ajdelsztajn, James Anthony Ruud, Dalong Zhong, Molly Maureen Gentleman
  • Publication number: 20100116088
    Abstract: A high-strength composition iron powder is prepared by mixing an iron base powder with 0.5 to 3.0 mass % of an Fe—Mn powder having a particle diameter of 45 ?m or less and a Mn content in the range of 60 to 90 mass %, 1.0 to 3.0 mass % of a Cu powder, 0.3 to 1.0 mass % of a graphite powder, and 0.4 to 1.2 mass % of a powder lubricant for die-forming while adjusting the ratio of the amount of Mn contained in the Fe—Mn powder to the amount of the Cu powder in the range of 0.1 to 1. The high-strength composition iron powder is press-formed and sintered at a temperature equal to or higher than the melting point of Cu to produce a high-strength sintered part having a tensile strength of 580 MPa or higher without using expensive alloying elements such as Ni and Mo.
    Type: Application
    Filed: October 5, 2009
    Publication date: May 13, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masaaki SATO, Satoshi Furuta, Takahiro Kudo, Takehiro Tsuchida
  • Publication number: 20100098968
    Abstract: The present invention is directed to composite metal foams comprising hollow metallic spheres and a solid metal matrix. The composite metal foams show high strength, particularly in comparison to previous metal foams, while maintaining a favorable strength to density ratio. The composite metal foams can be prepared by various techniques, such as powder metallurgy and casting.
    Type: Application
    Filed: December 16, 2009
    Publication date: April 22, 2010
    Inventor: Afsaneh Rabiei