Base Metal One Or More Of Beryllium(be), Magnesium(mg), Or Aluminum(al) Patents (Class 75/249)
  • Publication number: 20030147767
    Abstract: A tablet formed by prealloys iron-aluminum produced from automized powders to be used as additive element in aluminum alloys, is manufactured by the method having the steps of obtaining a metallic alloy by fusion of iron and aluminum with the iron and aluminum added in an electric arc or induction furnace, automizing the melted alloy by transporting the melted alloy to an intermediary contsiner with an opening as a metal flux controlled by a valve located in the opening for controlling and proportionating a continuous flux and supplying a jet of water under pressure when the liquid metal drains to provide a atomization and to produce small droplets that cool in water, solidify and are deposited as a powder; reducing humidity of the powder; classifying the thusly produced material, and compacting a thin fraction of the material for obtaining tablets; a tablet.
    Type: Application
    Filed: January 22, 2003
    Publication date: August 7, 2003
    Inventor: Ivan Calia Barchese
  • Patent number: 6602314
    Abstract: The present invention provides an aluminum composite material having neutron absorbing power that improves the ability to absorb neutrons by increasing the content of B, while also being superior to materials of the prior art in terms of mechanical properties and workability. The aluminum composite material having neutron absorbing power contains in Al or an Al alloy matrix phase B or a B compound having neutron absorbing power in an amount such that the proportion of B is 1.5% by weight or more to 9% by weight or less, and the aluminum composite material has been pressure sintered.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 5, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yasuhiro Sakaguchi, Tomikane Saida, Kazuo Murakami, Kazuhisa Shibue, Naoki Tokizane, Tatsumi Takahashi
  • Patent number: 6514309
    Abstract: An alloy feedstock for semi-solid metal injection molding. The alloy feedstock is an alloy material in particulate form and has a heterogeneous structure, a temperature range at 20% of the height of the peak of the main melting reaction greater than 40° C., and having a ratio of the height of the peak of the eutectic reaction to the height of the main melting reaction of less than 0.5.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: February 4, 2003
    Assignee: Thixomat, Inc.
    Inventors: Stephen E. LeBeau, D. Matthew Walukas, Raymond F. Decker
  • Patent number: 6485681
    Abstract: The invention relates to a method for manufacturing thin-walled pipes, which are made of a heat-resistant and wear-resistant aluminum-based material. The method comprises the spray-compacting of a thick-walled pipe made of a hypereutectic aluminum-silicon AlSi material, possibly a subsequent overaging annealing, and the hot deformation to a thin-walled pipe. Such a method is in particular suited for the production of cylinder liners of internal combustion engines, since the produced liners exhibit the required properties in regard to wear resistance, heat resistance and reduction of pollutant emission.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: November 26, 2002
    Inventors: Bernhard Commandeur, Rolf Schattevoy, Klaus Hummert
  • Patent number: 6482248
    Abstract: An aluminum/diamond composite for the manufacture of metal structures having high yield strength, high stiffness, high thermal conductivity, and low coefficient of thermal expansion. The composite consists of aluminum metal with included diamond particles. The volume fraction of diamond particles may range from 5% to 80%, but is most preferably about 30% to 40%. Two methods of manufacture of the composite are disclosed. The material may be used to manufacture gun barrels, rocket nozzles, cookware, heat sinks, electronics packaging, and automotive components such as brake disks, brake drums, transmission components, and engine components.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 19, 2002
    Assignee: Magnum Research, Inc.
    Inventor: Scott R. Holloway
  • Patent number: 6475263
    Abstract: A silicon base binary alloy of prealloyed powder having less than 10% aluminum, excluding zero. The alloy may be in the form of gas atomized prealloyed powder, which powder may be consolidated to form an article. Preferably, the article is a sputtering target.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: November 5, 2002
    Assignee: Crucible Materials Corp.
    Inventors: Brian J. McTiernan, Michael W. Peretti, Jocelyne O. McGeever
  • Publication number: 20020152841
    Abstract: An aluminum powder is mixed with a neutron absorber powder through cold isostatic press to form a preliminary molding. The preliminary molding is then subjected to sintering under no pressure in vacuum. After sintering, a billet is subjected to induction heating and hot extrusion to form a square pipe.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 24, 2002
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsunari Ohsono, Kazuo Murakami, Yasuhiro Sakaguchi, Toshiro Kobayashi, Toyoaki Yasui
  • Publication number: 20020104405
    Abstract: A method of co-forming a metal article comprising forming a powdered metal component from a first powdered metal composition, providing a polymeric foam, coating the polymeric foam with a second powdered metal composition to form a coated polymeric foam, placing the coated polymeric foam in contact with the powdered metal component to form a composite, and heat-treating the composite to volatilize the polymeric foam and to solidify the powdered metal component. The powdered metal composition of the powdered metal component can be the same or different than the powdered metal composition used to coat the polymeric foam. The resulting co-formed metal article can be in a variety of configurations including, but not limited to, metal foam on the inside or outside surfaces of a metal tube and metal foam on one or more faces of a metal plate.
    Type: Application
    Filed: February 5, 2001
    Publication date: August 8, 2002
    Inventors: David F. Haack, Chi-Li Lin, Michael Speckert
  • Patent number: 6398843
    Abstract: A dispersion-strengthened material is described which comprises aluminium or aluminium alloy containing a substantially uniform dispersion of ceramic particles to confer dispersion strengthening which is inherently stable at high working temperatures, the ceramic particles having a diameter of less than 400 nm, and preferably in the range 10 nm to 100 nm. Suitable ceramic dispersoids include Al2O3, TiO2, Al3C4, ZrO2, Si3N4, SiC, SiO2.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: June 4, 2002
    Assignee: Qinetiq Limited
    Inventor: Andrew Tarrant
  • Patent number: 6346132
    Abstract: A composite material includes a metallic second phase dispersed in a metallic matrix material. The metallic second phase has a grain structure that is at least partially martensitic. The second phase material is preferably an alloy of nickel and titanium, each present in the range from 48 to 52 atomic %, optionally in combination with further additives. The second phase particles can be present in the form of granular particles, wires, fibers, whiskers, or layers, making up 5 to 60 vol. % of the overall composite material. The matrix material is preferably an aluminum alloy. The composite material has a high damping capacity and a high tensile strength provided by the matrix, and a high damping capacity provided by the second phase. A method of making the composite material involves mixing a powdery matrix material and a powdery second phase material, and then heat and consolidating the mixture at a temperature of 400 to 700 ° C. and a pressure of 100 to 300 MPa.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: February 12, 2002
    Assignee: DaimlerChrysler AG
    Inventors: Ulrike Huber, Rainer Rauh, Eduard Arzt
  • Patent number: 6344280
    Abstract: A swash plate for a swash plate compressor, wherein aluminum alloy containing 12 to 60% of Si and, as required, 0.1 to 30% of Sn is sprayed onto the iron or aluminum base plate of the swash plate compressor to form a seizure-resisting and abrasion-resisting surface layer dispersed with granulated Si.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: February 5, 2002
    Assignees: Taiho Kogyo Co., Ltd., Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Syogo Muramatsu, Masanori Akiduki, Hiroaki Kayukawa, Hideki Mizutani, Manabu Sugiura, Hiroyuki Nakaima
  • Patent number: 6337141
    Abstract: The seizure resistance of an Al-based flame-sprayed layer formed on the swash plate of a swash-plate type comressor is increased to such a level comparable to that of a flame-sprayed bronze layer. The Al-based flame-sprayed layer of the present invention contains: from 12 to 60% of Si and granular Si particles dispersed in the matrix thereof, and at least one dispersing phase of graphite carbon, amorphous carbon and carbon, the crystallizing degree of which is between the graphite carbon and amorphous carbon, and MoS2.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: January 8, 2002
    Assignees: Taiho Kogyo Co., Ltd., Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Toyokazu Yamada, Soo-Myung Hong, Masanori Akiduki, Takashi Kokubo, Hiroaki Kayukawa, Hideki Mizutani, Manabu Sugiura, Takeshi Imanishi
  • Patent number: 6332906
    Abstract: Aluminum-silicon alloys having high stiffness are used in forming computer memory disks and actuator arms. Disks formed with the alloy have low flutter and can be spun at 12,000 RPM or greater with a flutter of 10 Å or less.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: December 25, 2001
    Assignee: California Consolidated Technology, Inc.
    Inventors: Tom Haynes, Kevin Anderson
  • Patent number: 6299665
    Abstract: An alloy feedstock for semi-solid metal injection molding. The alloy feedstock is an alloy material in particulate form and has a heterogeneous structure, a temperature range at 20% of the height of the peak of the main melting reaction greater than 40° C., and having a ratio of the height of the peak of the eutectic reaction to the height of the main melting reaction of less than 0.5.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: October 9, 2001
    Assignee: Thixomat, Inc.
    Inventors: Stephen E. LeBeau, D. Matthew Walukas, Raymond F. Decker
  • Patent number: 6287361
    Abstract: In order to keep the losses of a pump caused by oil return flow between the gears and the housing as low as possible at high operating temperatures, the oil pump gears are manufactured from a powdered Al/Si alloy formed by spray compacting, to which approximately 30 weight percent pure aluminum powder is admixed, by pressing and subsequent sintering.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: September 11, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Guido Hauptmann, Helmut Schäfer
  • Patent number: 6280496
    Abstract: A silicon carbide based composite material includes as a first component, a metal mainly consisting of aluminum or copper, and as a second component, particles mainly consisting of silicon carbide having high purity and few defects. The material is obtained by heating a compact of the raw material powder containing the first and second components at a temperature not lower than the melting point of the metal mainly consisting of aluminum or copper, and by forging and solidifying under pressure. Preferably, the silicon carbide raw material powder is prepared to have high purity by carrying out a preliminary treatment, or the material after forging or a material obtained through a conventional infiltration process is further heated at a temperature lower than the melting point of the first component. In this manner, an improved superior thermal conductivity can be obtained.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: August 28, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Kawai, Shin-ichi Yamagata, Akira Fukui, Yoshinobu Takeda
  • Patent number: 6271162
    Abstract: A process for producing a ceramic-metal composite, includes (1) mixing TiO2, and optionally Ti, with at least one of a boron-containing or carbon-containing material to give a green body mix; (2) heat treating the green body mix to a temperature from 900° C. to 1900° C. and below a temperature which leads to an autocatalytic reaction; (3) carrying out an exchange reaction between the material and the TiO2 to give a reaction product comprising at least one of TiBx and TiCy, wherein 0≦x 23 2 and 0≦y≦1; (4) producing a porous green body from the reaction product; (5) filling the porous green body with liquid aluminum after the exchange reaction; and (6) carrying out a reaction between the reaction product in the green body and the aluminum to form the ceramic-metal composite comprising a ceramic phase selected from the group consisting of TiBx-, TiCy-, TiCN- and Al2O3 and a comprising a metallic phase comprising an intermetallic compound of Ti and Al.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: August 7, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Tilmann Haug, Steffen Rauscher, Michael Schleydecker, Karl Weisskopf
  • Patent number: 6261336
    Abstract: A composition for forming molded metal containing articles having improved stability. More particularly, a corrosion resistant composition for forming injection molded articles having a sodium silicate corrosion inhibiting additive. The corrosion inhibitor prevents metal oxidation when a metal containing powder is mixed with a water based binder, providing stability to the article and preventing generation of hydrogen gas. This significantly enhances the shelf life of the moldable composition prior to molding.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: July 17, 2001
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Mohammad Behi, Jerry C. LaSalle, George A. Glandz
  • Patent number: 6254657
    Abstract: Disclosed is a molding method for powder particles, which is excellent in molding performance, and which makes it possible to obtain a preliminary molded product excellent in strength by enhancing mutual bonding between particles in the preliminary molded product. A molding apparatus for powder particles includes an outer frame die having a mold space with a lower punch and an upper punch to be slidably fitted thereto. Slight clearances exist between the outer frame die and the lower and upper punches. A mixture is prepared by mixing a powdery raw material with a liquid additive to cause an exothermic reaction therewith.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 3, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Mitsuo Kuwabara
  • Patent number: 6151198
    Abstract: An actuator E-block for a rotary data storage device has a number of solid flat arms and flat coil yokes. The arms and yokes are formed from a metal, metal-reinforced metal matrix composites (MMC), ceramic-reinforced MMCs, glasses, ceramics or ceramic composites having a low density metal matrix surrounding reinforcing particles of low density and high specific stiffness. The arms and yokes may be formed as inserts by inexpensive processes such as stamping, blanking or laser scribing. The arm and yoke inserts are placed in a mold and then overmolded with a metal or metal matrix composite E-block body using a thixotropic or semisolid forming process. After molding, these materials and processes form a cost effective, lightweight E-block with a near net shape and enhanced damping and stiffness.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: November 21, 2000
    Assignee: International Business Machines Corporation
    Inventors: Walter Lloyd Prater, Gwendolyn Jones Chung, Tim Raeburn Lincoln
  • Patent number: 6132530
    Abstract: Aluminum-strontium enriched master alloy granules for use primarily in modifying the eutectic phase in aluminum-silicon casting alloys. The master alloy granules are predominantly intermetallic compounds Al.sub.4 Sr, Al.sub.2 Sr or AlSr and mixtures thereof. By using such intermetallic dominant alloys in a granulated state rapid dissolution in aluminum-silicon alloy melts is achieved. The master alloy composition can be directly added to a content of the melt or injected into it. The master alloy composition can also be mixed with aluminum granules and extruded into a rod or entrained into a billet of cast aluminum.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: October 17, 2000
    Assignee: Timminco Limited
    Inventors: Douglas J. Zuliani, Bahadir Kulunk
  • Patent number: 6096111
    Abstract: A homogeneous sintered composite made by press-forming a homogeneous mixture of powders of an agglutinating component, a second component having a melting point higher then the agglutinating component, and an exothermically reactive component to form a compact; heating the compact, then inducing an exothermic reaction of the reactive substance which generates sufficient additional heat to melt the agglutinating component without melting the high melting point component. For electronic microcircuit heat-dissipation applications the agglutinating component is a high thermal conductivity metal, and the high melting point component has a low thermal expansivity, whose proportions are adjusted to match the thermal expansion characteristics of microcircuit material. To reduce porosity, the reacted compact is pressed again while the agglutinating component is still in the liquid phase. For low weight applications the second material has high specific thermal conductivity.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: August 1, 2000
    Assignee: Frank J. Polese
    Inventors: Frank J. Polese, Ranganath Saraswati
  • Patent number: 6089843
    Abstract: An outer rotor and an inner rotor are formed of sintered aluminum alloy. The sintered aluminum alloy contains 0.5 wt % to 11 wt % of aluminum nitride. Porosity of the sintered aluminum alloy for outer rotor is 3 vol % to 15 vol %. Porosity of the sintered aluminum alloy for inner rotor is 2 vol % to 10 vol %. Outer rotor and inner rotor are set in a pump case. A rotary driving shaft formed of steel is inserted to a through hole of inner rotor. A press fit member is inserted at a press fit surface of inner rotor and rotary driving shaft. Accordingly, sliding members formed of sintered aluminum alloy which reduces seizure and abrasive wear of the inner and outer rotors can be provided, and in addition, an oil pump of which wear and damage at the inner rotor inner diameter surface is suppressed, can be provided.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: July 18, 2000
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Katsuyoshi Kondoh
  • Patent number: 6056802
    Abstract: A high-strength aluminum-based alloy consisting essentially of a composition represented by the general formula: Al.sub.bal Mn.sub.a M.sub.b or Al.sub.bal Mn.sub.a M.sub.b TM.sub.c wherein M represents one or more members selected from the group consisting of Ni, Co, Fe and Cu, TM represents one or more members selected from the group consisting of Ti, V, Cr, Y, Zr, La, Ce and Mm and a, b and c each represent an atomic percent (at %) in the range of 2.ltoreq.a.ltoreq.5, 2.ltoreq.b.ltoreq.6 and 0<c.ltoreq.2 and containing monoclinic crystals of an intermetallic compound of an Al.sub.9 Co.sub.2 -type structure in the structure thereof. The Al-based alloy has excellent mechanical properties including a high hardness, high strength and high elongation.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: May 2, 2000
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Koji Saito
  • Patent number: 6042631
    Abstract: An AlN dispersed powder aluminum alloy with a particular composition and structure has excellent wear resistance, seizure resistance, heat resistance, toughness and machinability. In the structure of the alloy, AlN layers are discontinuously dispersed along some of the grain boundaries of former aluminum alloy particles in the matrix of an aluminum alloy sintered body. Diffusion and sintering progresses between non-nitrided grains at areas of grain boundaries not having AlN layers, to attain strong bonding between the grains. A nitriding accelerative element such as Mg, Ca or Li is provided in some of the grains to promote the discontinuous formation of the AlN layers. Additionally, layers of a nitriding suppressive element such as Sn, Pb, Sb, Bi or S may be discontinuously dispersed at regions along some of the grain boundaries, and bonding between grains is achieved at these regions as well.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: March 28, 2000
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyoshi Kondoh, Atsushi Kimura, Yoshishige Takano
  • Patent number: 6015627
    Abstract: A head drum for supporting a magnetic head for magnetically recording information on and reproducing information from a magnetic tape includes an inner body of an aluminum alloy, and a wear-resistant layer of a sintered powdery alloy disposed around an outer circumference of the inner body in at least a region for sliding contact with an elongate magnetic recording medium. The wear-resistant layer has a thickness of at least 0.2 um, and the sintered powdery alloy comprises a powdery alloy of 17 to 38% of Si, 0.5 to 5% of Cu, 0.3 to 5% of Mg, and the remainder of aluminum.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: January 18, 2000
    Assignees: Sony Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yasuhiro Hirafune, Akio Kikuchi
  • Patent number: 5997604
    Abstract: Corrosion resistant metal, either platinum or MCrAlY is bonded to a corrosion sensitive metal such as nickel based superalloys by coating the surface with the corrosion resistant metal particles held in a binder and covering this with a metalide generating tape. This is then heated to cause the formation of the metalide coating on the metal surface, which in turn, bonds the corrosion resistant metal to the surface.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: December 7, 1999
    Assignee: C. A. Patents, L.L.C.
    Inventors: Kevin Rafferty, Bruce Rowe
  • Patent number: 5993513
    Abstract: A method for controlling oxygen in valve metal materials. The method includes deoxidizing a valve metal material, typically tantalum, niobium, or alloys thereof, and leaching the material in an acid leach solution at a temperature lower than room temperature. In one embodiment of the present invention, the acid leach solution is prepared and cooled to a temperature lower than room temperature prior to leaching the deoxidized valve metal material. The method of the present invention has been found to lower both the oxygen and fluoride concentrations in valve metal materials, as the use of reduced acid leach temperatures provide lower oxygen for a given quantity of a leach acid, such as hydrofluoric acid.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: November 30, 1999
    Assignee: Cabot Corporation
    Inventor: James A. Fife
  • Patent number: 5980602
    Abstract: An improved metal matrix composite utilizes boron carbide as a ceramic additive to a base material metal. The base material metal is aluminum, magnesium, or titanium, or an alloy thereof, provided in powder form with the balance of the material comprising various trace metals such as chromium, copper, iron, magnesium, silicon, titanium, and zinc. The boron carbide powder comprises 10 to 30% by weight of the metal matrix composition. There is at least one other metal additive. The compositions are useful in a variety of applications where lightweight, strength, stiffness, hardness, and low density are desirable. The compositions are extrudable and weldable.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: November 9, 1999
    Assignee: Alyn Corporation
    Inventor: Robin A. Carden
  • Patent number: 5976214
    Abstract: A slide member of a sintered aluminum alloy includes a matrix (1) formed of an aluminum alloy powder, and aluminum nitride films (2) dispersed along old, i.e. former original, powder grain boundaries of this matrix. When a state in which the aluminum nitride films (2) completely continuously enclose the peripheries of the old powder grain boundaries is defined as a dispersion ratio of 100%, the present aluminum nitride films (2) are discontinuously dispersed at a dispersion ratio of not more than 80%. A powder compact consisting of rapidly solidified aluminum alloy powder is heated and held in a nitrogen gas atmosphere, thereby facilitating reaction between aluminum and nitrogen through an exothermic phenomenon following deposition of elements solidly dissolved in the aluminum alloy, for forming aluminum nitride films dispersed on the aluminum alloy powder grain surfaces.
    Type: Grant
    Filed: December 13, 1995
    Date of Patent: November 2, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshishige Takano
  • Patent number: 5965829
    Abstract: An extruded metal matrix composite incorporates boron carbide in fine particulate form. The composition is useful as a radiation shield.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: October 12, 1999
    Assignee: Reynolds Metals Company
    Inventors: Thomas G. Haynes, Kevin Anderson, Edward L. Oschmann
  • Patent number: 5964967
    Abstract: A treatment process for a composite comprising a matrix of a precipitation hardenable aluminum alloy and a particulate or short fiber ceramic reinforcement. The process includes hot and/or cold working the composite, subjecting the composite to a controlled heating step in which the composite is raised from ambient temperature to a temperature of from 250 to 450.degree. C. at a rate of temperature increase less than 1000.degree. C. per hour, and subjecting the resulting heat treated composite to a solution treating step.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: October 12, 1999
    Assignees: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland, Defence Research Agency
    Inventors: Timothy Frederick Bryant, Simon Brian Dodd, Stephen Mark Flitcroft, William Sinclair Miller, Roger Moreton, Christopher John Peel
  • Patent number: 5951737
    Abstract: Aluminum powder compositions intended for powder metallurgy applications are provided. The powder compositions contain aluminum and aluminum alloys or blends made from elemental powders, admixed with a polyethylene lubricant. The polyethylene admixture eases the compaction of powders and the ejection of parts. As compared to other conventional admixed lubricants used for Al powder metallurgy applications, polyethylene allows to obtain parts with higher green and sintered strengths. Proper delubrication prior to sintering is of importance.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: September 14, 1999
    Assignee: National Research Council of Canada
    Inventors: Louis-Philippe Lefebvre, Yannig Thomas
  • Patent number: 5902943
    Abstract: The invention relates to an aluminum powder blend and sintered components produced from the aluminum powder blend. The powder is based on the precipitation hardenable 7000 series Al-Zn-Mg-Cu alloys with trace addition of lead or tin. The powder blend comprises 2-12 wt. % zinc, 1-5 wt. % magnesium, 0.1-5.6 wt. % copper, 0.01-0.3 wt. % lead or tin, and the balance aluminum. The invention also provides a composite powder comprising the foregoing powder blend and a reinforcing element or compound.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: May 11, 1999
    Assignee: The University of Queensland
    Inventors: Graham Barry Schaffer, Roger Neil Lumley, Shuhai Huo
  • Patent number: 5882443
    Abstract: Aluminum-strontium enriched master alloy granules for use primarily in modifying the eutectic phase in aluminum-silicon casting alloys. The master alloy granules are predominantly intermetallic compounds Al.sub.4 Sr, Al.sub.2 Sr or Alsr and mixtures thereof. By using such intermetallic dominant alloys in a granulated state rapid dissolution in aluminum-silicon alloy melts is achieved. The master alloy composition can be directly added to a content of the melt or injected into it. The master alloy composition can also be mixed with aluminum granules and extruded into a rod or entrained into a billet of cast aluminum.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: March 16, 1999
    Assignee: Timminco Limited
    Inventors: Douglas J. Zuliani, Bahadir Kulunk
  • Patent number: 5869778
    Abstract: Apparatus for use in cooling an integrated circuit structure. The apparatus includes a heat sink having a first portion configured for thermal engagement with an integrated circuit device and a second portion configured for the dissipation of heat into an ambient fluid, such as air. The heat sink is made from a powdered metal which, in one preferred embodiment, includes copper. The heat sink may be formed from the plurality of discrete layers, each layer having a button projecting from one surface, and a depression formed in an opposing surface. The depression is configured to receive a projecting button portion from another layer. In an alternative embodiment the heat sink includes a plurality of plugs projecting from the generally flat surface.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: February 9, 1999
    Assignee: LSI Logic Corporation
    Inventor: Mark R. Schneider
  • Patent number: 5809393
    Abstract: A sputtering target comprising a body of metal such as aluminum and its alloy with an ultrafine grain size and small second phase. Also described is a method for making an ultra-fine grain sputtering target comprising melting, atomizing, and depositing atomized metal to form a workpiece, and fabricating the workpiece to form a sputtering target. A method is also disclosed that includes the steps of extruding a workpiece through a die having contiguous, transverse inlet and outlet channels of substantially identical cross section, and fabricating the extruded article into a sputtering target. The extrusion may be performed several times, producing grain size of still smaller size and controlled grain texture.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: September 15, 1998
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: John Alden Dunlop, Jun Yuan, Janine Kiyabu Kardokus, Roger Alan Emigh
  • Patent number: 5788737
    Abstract: Disclosed is an aluminum base sintered material, in which said material comprises base powders 2 of an aluminum or an alloy thereof and numerous endless passages being formed by pores connected to each other, said pores intervening between said base powders 2 adjacent to each other, and in which said material is provided with bridging portions 3 for interconnecting said base powders 2 adjacent to each other, said bridging portions 3 having therein an eutectic structure with a hyper-eutectic compounds and with a containment of the eutectic element and the balance of aluminum.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: August 4, 1998
    Assignee: N.D.C. Co., Ltd.
    Inventors: Hiroo Wakiyama, Hiroyoshi Kikuchi, Takeshi Sakai
  • Patent number: 5780755
    Abstract: A sputtering target comprising a body of metal such as aluminum and its alloy with an ultrafine grain size and small second phase. Also described is a method for making an ultra-fine grain sputtering target comprising melting, atomizing, and depositing atomized metal to form a workpiece, and fabricating the workpiece to form a sputtering target. A method is also disclosed that includes the steps of extruding a workpiece through a die having contiguous, transverse inlet and outlet channels of substantially identical cross section, and fabricating the extruded article into a sputtering target. The extrusion may be performed several times, producing grain size of still smaller size and controlled grain texture.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: July 14, 1998
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: John Alden Dunlop, Jun Yuan, Janine Kiyabu Kardokus, Roger Alan Emigh
  • Patent number: 5744734
    Abstract: A method for fabricating articles of high-temperature aluminum alloys having a compressional strength of at least 20 kg/mm.sup.2 at temperatures of 300.degree. C. or greater, is disclosed. The method comprises the steps of: (a) forming a porous preform from particles of a first aluminum alloy via cold-pressing, the preform having the shape and dimension of the aluminum alloy article to be fabricated; (b) squeeze-casting a molten second aluminum alloy into void spaces of the porous preform to form an aluminum composite containing the first aluminum alloy, which serves as a reinforcement phase, dispersed in the second aluminum alloy, which serves as a matrix phase; (c) wherein the molten second aluminum alloy is cast at such temperatures so as to cause a surface of the first aluminum alloy particles to melt and thereby form a strong bonding with the second aluminum alloy.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: April 28, 1998
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chao Yang, Edward Chang
  • Patent number: 5722036
    Abstract: Disclosed is a manufacturing process of a sintered connecting rod assembly comprising a first member with a projection and a second member with a concavity in which the first member and the second member are mated with each other by engaging the projection with the concavity. A powdered raw material is compacted into a first compact and a second compact for the first and second members, wherein the projection of the first compact has a width slightly larger than the width of the concavity of the second compact. Then the projection of the first compact is engaged with the concavity of the second compact to mate the first compact with the second compact, thereby the projection and the concavity are tightly pressed against each other. After sintering the mated first and second compacts, they are forced to release the projection from the concavity. The die for compacting the raw material has a whole cavity and a removable core for dividing the whole cavity into two cavities.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 24, 1998
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Hideo Shikata, Jun Sakai
  • Patent number: 5716467
    Abstract: Disclosed is a practical aluminum based alloy containing 1 to 99 weight percent beryllium, and improved methods of semi-solid processing of aluminum alloys containing beryllium. The present methods avoid molten beryllium, agitation of molten aluminum-beryllium alloys and the need for introducing shear forces by utilizing atomized or ground particles of beryllium mixed with solid, particulate or liquidus aluminum.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: February 10, 1998
    Assignee: Brush Wellman Inc.
    Inventors: James M. Marder, Warren J. Haws
  • Patent number: 5701576
    Abstract: The manufacturing method of plastically formed products prevents the generation of cracks at the time of plastic working, thereby increasing the productivity. It is also prevented that the metallic particles constituting the product become large and rough in structure. In the manufacturing method, only the compact treatment and the vacuum deaeration treatment are carried out prior to the extrusion treatment, without the pressure-heat treatment performed. Therefore, processing steps prior to the extrusion treatment are simplified, so that the productivity of the plastically formed products is improved and the metallic particles are prevented from being large and rough. The diffusion treatment between the extrusion treatment and the forging treatment enhances the adhesion at the inner part of the extruded material in the radial direction, whereby the generation of cracks at the time of plastic working is avoided.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: December 23, 1997
    Assignee: Mazda Motor Corporation
    Inventors: Makoto Fujita, Yukio Yamamoto, Nobuo Sakate, Shoji Hirabara
  • Patent number: 5698006
    Abstract: The improved intermetallic compounds represented by xNiAl+X (x=50.5-63.5), with dopant element X being selected from among Ti, Fe, V, W, Cr, Cu, Mo, Nb, Ta, Hf, Zr and B, are lightweight and have satisfactory oxidation resistance and high-temperature strength and, hence, are useful as structural materials in aerospace (as in space shuttles) and nuclear fields (for use in reprocessing facilities). A representative intermetallic compound having the formula NiAl+x(Mo/Re)+cB, wherein the ratio of Ni:Al is 56.5:43.5, the ratio of Mo:Re is either 1:1 or 1:0.5, x is between 0.1 and 1 at. %, and c is from 0 to 0.2 at. %, is disclosed.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: December 16, 1997
    Assignee: Japan Atomic Energy Research Institute
    Inventor: Shintaro Ishiyama
  • Patent number: 5693897
    Abstract: A high strength, heat resistant aluminum-based alloy having a composition represented by the general formula Al.sub.bal Ti.sub.a Fe.sub.b or the general formula Al.sub.bal Ti.sub.a Fe.sub.b M.sub.c, wherein M represents at least one element selected from among V, Cr, Mn, Co, Y, Zr, Nb, Mo, Ce, La, Mm (misch metal), Hf, Ta and W; and a, b and c are, in weight percentage, 7.ltoreq.a.ltoreq.20, 0.2.ltoreq.b.ltoreq.6 and 0<c.ltoreq.6. A compacted and consolidated aluminum-based alloy having high strength and heat resistance is produced by melting a material having the above-specified composition, rapidly solidifying the melt into powder or flakes, compacting the resulting powder or flakes, and compressing, forming and consolidating the compacted powder or flakes by conventional plastic working.
    Type: Grant
    Filed: February 22, 1996
    Date of Patent: December 2, 1997
    Assignee: YKK Corporation
    Inventor: Kazuhiko Kita
  • Patent number: 5665306
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: September 9, 1997
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin
  • Patent number: 5658366
    Abstract: A heat- and abrasion-resistant aluminum alloy having a grain size of the matrix of .alpha.-aluminum in the alloy not more than 1,000 nm; a grain size of an intermetallic compounds contained in the alloy of not more than 500 nm; and 0.5 to 20% by volume of ceramic particles in the range of 1.5 to 10 .mu.m in particle size and dispersed in the alloy. By this composition, the stress concentration due to the ceramic particles is reduced. Furthermore, because the powders bind well with each other, the heat resistance and abrasion resistance are compatibly improved without decreasing toughness and ductility.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: August 19, 1997
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kenji Okamoto, Hiroyuki Horimura, Masahiko Minemi, Kensuke Honma
  • Patent number: 5652877
    Abstract: The present invention relates to alloys in which the essential constituent is aluminum, metal deposits produced from these alloys, substrates coated with these alloys and the applications of these alloys. The alloys of the present invention are characterized in thatthey have the following atomic composition (I):Al.sub.a Cu.sub.b Co.sub.b' (B,C).sub.c M.sub.d N.sub.e I.sub.f(I)a+b+b'+c+d+e+f=100, expressed as number of atoms, a.gtoreq.50, 0.ltoreq.b<14, 0.ltoreq.b'.ltoreq.22, 0<b+b'.ltoreq.30, 0.ltoreq.c.ltoreq.5, 8.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.4, f.ltoreq.2, where M represents one or more elements chosen from Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn and Pd; N represents one or more elements chosen from W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge and the rare earths; I represents the inevitable production impurities;and they contain at least 30% by mass of one or more quasicrystalline phases.
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: July 29, 1997
    Assignee: Centre National de la Recherche
    Inventors: Jean-Marie Dubois, Antoine Pianelli
  • Patent number: 5648620
    Abstract: A cast sliding surface bearing for guiding and supporting moving machine members consists of a light alloy matrix (4), which contains a cast-in shaped body (2), which constitutes portions of the sliding surface (6) and is made of a hard material and has open cavities, which contain infiltrated matrix material. In order to achieve improved tibological properties the open cavities of the shaped body are filled with matrix material, each of the hard portions of the shaped body which lie in the sliding surface has a size, measured in an axis, of .ltoreq.0.1 mm, and the distance between the hard portions of the shaped body, measured in an axis, is .ltoreq.2 mm.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: July 15, 1997
    Assignee: KS Aluminium-Technologie Aktiengesellschaft
    Inventors: Otto W. Stenzel, Georg Sick, Eduard Kohler, Herbert Moding, Jurgen Niehues
  • Patent number: 5637816
    Abstract: A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: June 10, 1997
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventor: Joachim H. Schneibel