Carbon(c) Patents (Class 75/448)
  • Patent number: 10661340
    Abstract: Method and apparatus for producing direct reduced iron (DRI) powder or molten iron from iron ore fines by mixing said iron ore fines with hydrogen and oxygen and igniting the mixture in a flame reactor with flame temperatures controlled to produce solid iron powder or molten iron.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: May 26, 2020
    Assignee: Reid Reactors LLC
    Inventor: Kenneth John Reid
  • Patent number: 10434576
    Abstract: Method and apparatus for producing direct reduced iron (DRI) powder or molten iron from iron ore fines by mixing said iron ore fines with hydrogen and oxygen and igniting the mixture in a flame reactor with flame temperatures controlled to produce solid iron powder or molten iron.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: October 8, 2019
    Assignee: Reid Reactors LLC
    Inventor: Kenneth John Reid
  • Publication number: 20150135899
    Abstract: A method for introducing fine particulate material (4) of ferruginous particles into a fluidized bed reduction unit (1) having a fluidized bed (24), wherein the temperature in the fluidized bed (24) is more than 300° C., and wherein the fine particulate material (4) is introduced directly into the fluidized bed (24) and/or into a free space (25) above the fluidized bed (24) by means of a burner (2). The method may be used for producing liquid pig iron (17) or liquid steel precursor products (18) by a smelting reduction process in a smelting reduction unit (22).
    Type: Application
    Filed: April 4, 2013
    Publication date: May 21, 2015
    Inventors: Franz Hauzenberger, Robert Millner, Jan-Friedemann Plaul, Norbert Rein
  • Patent number: 8926728
    Abstract: A process for producing hot metal includes partially reducing granular raw materials containing iron oxide with a carbonaceous reducing agent in a fluidized bed reactor at a temperature of at least 850° C. so as to obtain a reduced mixture. The reduced mixture is cooled to between 600° C. and 800° C. in a heat exchanger apparatus using a preheated process gas as a cooling medium that is preheated to between 300° C. and 500° C. before being introduced into the heat exchanger apparatus. The reduced mixture is then supplied to a smelting reduction unit via a discharge system.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: January 6, 2015
    Assignee: Outotec Oyj
    Inventors: Jean-Paul Nepper, Tobias Stefan
  • Patent number: 8561556
    Abstract: An installation for combustion (1) of carbon-containing solids includes an oxide reducing reactor (2), a first cyclone (5), a recuperator (6), an oxidation reactor (3), a second cyclone (4), wherein flows an oxide which is reduced then oxidized in each of the two reactors (2 and 3). In the installation, the fuel is ground before being introduced into the reduction reactor (3). The reduced size of the solid fuel particles enables more complete and faster combustion and enables almost 100% production of fly ashes which are separated from the circulating oxides.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 22, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Jean-Xavier Morin, Corine Beal
  • Publication number: 20130118306
    Abstract: A process for producing hot metal includes partially reducing granular raw materials containing iron oxide with a carbonaceous reducing agent in a fluidized bed reactor at a temperature of at least 850° C. so as to obtain a reduced mixture. The reduced mixture is cooled to between 600° C. and 800° C. in a heat exchanger apparatus using a preheated process gas as a cooling medium that is preheated to between 300° C. and 500° C. before being introduced into the heat exchanger apparatus. The reduced mixture is then supplied to a smelting reduction unit via a discharge system.
    Type: Application
    Filed: May 19, 2011
    Publication date: May 16, 2013
    Applicant: OUTOTEC OYJ
    Inventors: Jean-Paul Nepper, Tobias Stefan
  • Patent number: 8333821
    Abstract: A low-temperature process of producing high-purity iron powder by feeding hematite and a reducing agent into a rotary reactor under pressure to form a mechanical fluid bed. The fluid bed is rotated at a particular speed within a rotary reactor. The fluid bed is simultaneously heated to a reaction temperature, and the pressure is then reduced within the rotary reactor to a pressure in a range of 0.01 bars to 2.0 bars, as a result reducing the reaction temperature to a temperature in a range of 600° C. to 850° C. Maintaining the pressure and the rotation results in the formation of a high-purity iron oxide without the requirement for post-grinding process steps because sintering is prevented by using a combination of pressure reduction and a rotary set at an optimum rotation speed, resulting in useful additives produced by a more environmentally-friendly process.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: December 18, 2012
    Assignee: InNova Powders, Inc.
    Inventor: Carla D. Di Luca
  • Patent number: 8313552
    Abstract: A method and an apparatus for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier, with the introduction of oxygen-containing gas streams through oxygen nozzles into the solid bed. At least one oxygen nozzle has a single gas supply and introduces at least two gas streams. Using plural gas streams from a nozzle reduces the risk of fluidization of the solid bed because the number of gas raceways in materials in the gasifier is increased.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 20, 2012
    Assignees: Siemens Vai Metals Technologies GmbH, Posco
    Inventor: Leopold Werner Kepplinger
  • Patent number: 8038766
    Abstract: A direct reduction process for a metalliferous material includes supplying the metalliferous material, a solid carbonaceous material, an oxygen-containing gas, and a fluidizing gas into a fluidized bed in a vessel and maintaining the fluidized bed in the vessel, at least partially reducing metalliferous material in the vessel, and discharging a product stream that includes the partially reduced metalliferous material from the vessel. The process comprises (a) reducing the metalliferous material in a solid state in a metal-rich zone in the vessel; (b) injecting the oxygen-containing gas into a carbon-rich zone in the vessel with a downward flow in a range of ±40° to the vertical and generating heat by reactions between oxygen and the metalliferous material (including metallized material), the solid carbonaceous material and other oxidizable solids and gases in the fluidized bed, and (c) transferring heat from the carbon-rich zone to the metal-rich zone by movement of solids within the vessel.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: October 18, 2011
    Assignee: Outotec Oyj
    Inventors: Andreas Orth, Heinz Eichberger, Donald Keith Philp, Jeantine Van Gemund, legal representative, Rod Dry
  • Patent number: 7947107
    Abstract: An apparatus for reducing a metalliferous material in a fluidized bed includes a vessel for containing the fluidized bed, a mechanism for supplying the metalliferous material, a solid carbonaceous material, an oxygen-containing gas, and a fluidizing gas into the vessel for forming the fluidized bed in the vessel. The oxygen-containing gas supply mechanism includes one or more than one oxygen-containing gas injection lance having a lance tip with an outlet that is positioned for injecting the oxygen-containing gas in a downward flow into the vessel within a range of plus or minus 40° to the vertical.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 24, 2011
    Assignee: Outotec Oyj
    Inventors: Andreas Orth, Heinz Eichberger, Donald Keith Philp, Jeantine Van Gemund, legal representative, Rod Dry
  • Patent number: 7713329
    Abstract: The invention relates to an apparatus and method for manufacturing molten iron. The method for manufacturing molten iron includes producing a mixture containing iron by drying and mixing iron-containing ore and additives, passing the mixture containing iron through one or more successively-connected fluidized beds so that the mixture is reduced and calcined to thereby perform conversion into a reduced material, forming a coal packed bed, which is a heat source in which the reduced material has been melted, charging the reduced material to the coal packed bed and supplying oxygen to the coal-packed bed to manufacture iron, and supplying reduced gas exhausted from the coal-packed bed to the fluidized bed, wherein in the conversion of the mixture to a reduced material, oxygen is directly supplied and combusted in an area where reduced gas flows to the fluidized bed. The apparatus for manufacturing molten iron of the invention uses this method for manufacturing molten iron.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: May 11, 2010
    Assignees: POSCO, Research Institute of Industrial Science & Technology, Voest-Alpine Industrieanlagenbau GmbH & Co.
    Inventors: Myoung-Kyun Shin, Jun-Hyuk Lee
  • Publication number: 20090308204
    Abstract: Disclosed is a method for reducing metalliferous material to a reduction product. Also disclosed is an apparatus for reducing metalliferous material to a reduction product.
    Type: Application
    Filed: July 18, 2007
    Publication date: December 17, 2009
    Applicant: CORUS TECHNOLOGY BV
    Inventor: Christiaan Johannes Kooij
  • Patent number: 7608128
    Abstract: A direct reduction process for a metalliferous material includes supplying a solid carbonaceous material and an oxygen-containing gas into a fluidized bed in a first vessel and generating heat by reactions between the oxygen-containing gas and the solid carbonaceous material and any other oxidizable solids and gases in the fluidized bed and discharging a hot off-gas stream containing entrained solids. The process also includes supplying the metalliferous material to a fluidized bed in a second vessel and supplying the hot off-gas stream containing entrained solids from the first vessel to the fluidized bed in the second vessel and partially reducing the metalliferous feed material in the solid state in the fluidized bed and discharging a product stream of partially reduced metalliferous material and an off-gas stream containing entrained solids.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: October 27, 2009
    Assignee: Outotec Oyj
    Inventors: Andreas Orth, Heinz Eichberger, Donald Keith Philp, Jeantine Van Gemund, legal representative, Rod Dry
  • Patent number: 6599374
    Abstract: An end product containing iron carbide (Fe3C) is produced from an intermediate product consisting of granular, directly reduced iron. Said intermediate product is supplied by an iron ore reduction plant and is fed to a carburization reactor. Liquid hydrocarbons are conveyed to the carburization reactor at temperatures of 500 to 900° C., at least part of the granular, directly reduced iron being subjected to a swirling movement. The end product removed from the carburization reactor consists of 5 to 90 wt. % Fe3C. A fluidization gas containing methane and hydrogen can be added to the carburization reactor in addition to the hydrocarbons.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: July 29, 2003
    Assignee: Metallgesellschaft AG
    Inventors: Martin Hirsch, Alpaydin Saatci
  • Publication number: 20020178864
    Abstract: A method for making surface-coated reduced iron includes the step of coating the surface of reduced iron with a tar emulsion. Preferably, the tar emulsion includes at least one hydrocarbon-based material selected from the group consisting of natural petroleum tar, coal tar, pitch, asphalt, liquefied coal, and residual oil from petroleum refining; a surfactant; and water. More preferably, the tar emulsion contains 60 to 80 percent by mass of the hydrocarbon-based material, 0.1 to 1 percent by mass of the surfactant, and the balance being substantially water.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 5, 2002
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Naoto Watanabe, Masahiro Shimizu
  • Patent number: 6454833
    Abstract: In a method for producing liquid pig iron (9) or steel pre-products from fine-particulate iron-containing material (4) in a melter gasifier (1), the iron-containing material (4) is melted in a bed of solid carbon carriers (2) under supply of carbon-containing material (2) and oxygen-containing gas, at the simultaneous formation of a reducing gas, wherein the fine-particulate reduced material (4) and oxygen are introduced into the bed (20, 21) from the side.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: September 24, 2002
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Michael Nagl, Johannes-Leopold Schenk, Werner Leopold Kepplinger
  • Publication number: 20020124690
    Abstract: Granular coal and preheated granular iron ore are charged into a low-temperature carbonization reactor, in which temperatures in the range from 800 to 1050 ° C. are produced by supplying gas containing oxygen and by partial oxidation of the components of the coal. In the low-temperature carbonization reactor, the granular solids are maintained in a turbulent movement. From the upper region of the reactor, hot exhaust gas is supplied to a solids separator. The granular iron ore is preheated by means of the hot exhaust gas and hot, granular mixture of iron ore and low-temperature coke is withdrawn as product from the reactor and/or from the separator. The low-temperature carbonization reactor may be designed as fluidized-bed reactor or as pneumatic conveyor section. The granular mixture of iron ore and low-temperature coke is suitable e.g. for a melt reduction process.
    Type: Application
    Filed: January 4, 2002
    Publication date: September 12, 2002
    Applicant: mg technologies ag
    Inventors: Andreas Orth, Martin Hirsch, Peter Weber
  • Patent number: 6379426
    Abstract: The present invention is concerned with a method for the pre-reduction of laterite fines in a reactor, preferably a fluidized bed, with reducing gases generated in situ by adding a reducing agent such as a carbonaceous material in the fluidized bed chamber, fluidizing the bed with an oxidizing gas and maintaining the reactor at a temperature sufficiently high to partially combust the coal and generate a reducing atmosphere. The reactor bed discharge calcine product has a carbon content of about 0.1%, and the composite reactor product has a carbon content lower than 2.0%.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: April 30, 2002
    Assignee: Falconbridge Limited
    Inventors: Ron Shonewille, Gary Kaiura, Terrence Koehler
  • Patent number: 6277171
    Abstract: A method of reducing the iron content of starting material containing calcium, silicon and oxygen, and iron in the form of a ferrite and/or oxide, for example a steel slag, includes the steps of heating the starting material to a temperature of at least 800° C. and preferably between 900° C. and 1150° C. inclusive, in the presence of a reductant such as carbon monoxide and in the presence of a siliceous material with which non-ferrous oxides released during the reduction form high melting point compounds, to produce a magnetic form of iron, and removing at least some of the magnetic form of iron to produce a product, which may be used as a raw material in the cement industry.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: August 21, 2001
    Assignee: Ipcor N.V.
    Inventor: Dirk Guustaaf Mantel
  • Patent number: 6235082
    Abstract: With a method for producing liquid metal from charging substances containing ore and of fluxes, the ore is directly reduced to sponge metal in at least one reduction zone (5, 7, 8), the sponge metal is melted along with fluxes in a melt-down gasifying zone (11) under the supply of carbon carriers and an oxygen-containing gas. A CO- and H2-containing process gas serving as a reducing gas is produced, fed into the reduction zone (5, 7, 8), reacted there, and subsequently withdrawn, wherein slagforming fluxes, in particular calcium carbonate, dolomite etc., gas are calcined by the process gas in a calcining zone (26′) that is separate from the reduction zone (5, 7, 8) and melt-down zone (11). To be able to employ slagforming fluxes of any desired grain and without disturbances of the reduction process, the calcining zone (26′) is connected in parallel to the reduction zone (5, 7, 8) with respect to the material flow and the calcined fluxes are fed into the melter gasifier (10) directly.
    Type: Grant
    Filed: May 24, 1998
    Date of Patent: May 22, 2001
    Assignees: Voest-Alpine Industrieanlagenbau GmbH, Pohang Iron & Steel Co., Ltd., Research Institute of Industrial Science & Technology
    Inventors: Werner Leopold Kepplinger, Johann Wurm, Johannes-Leopold Schenk
  • Patent number: 6224650
    Abstract: An apparatus for manufacturing molten iron by using a calcination furnace, and a manufacturing method therefor are disclosed. A high temperature reducing gas (1000 to 1100° C.) from a melter gasifier is used as a calcination heat in a calcination furnace so as to cool the high temperature reducing gas to the optimum reduction temperature (800 to 850° C.), and so as to supply the cooled reducing gas to a shaft furnace, whereby the manufacture of the molten iron can be efficiently carried out, and a high thermal efficiency is realized even without a separate gas cooling device. Therefore, a separate cooling device for cooling the hot reducing gas of the melter gasifier is not required. Further, the hot reducing gas is naturally cooled at the calcination furnace, and therefore, the thermal efficiency of the hot reducing gas of the melter gasifier is maximized. Further, a separate water-using cooler and a separate compressor are omitted, and therefore, the molten iron manufacturing facility is simplified.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: May 1, 2001
    Assignee: Pohang Iron & Steel Co., Ltd.
    Inventors: Sang Deok Lee, Young Chae Jung, Yoon Chul Park
  • Patent number: 6053961
    Abstract: Method and apparatus for smelting iron ore in which iron ore is preheated and partly reduced within a first reaction zone and then further reduced in a second reaction zone. The first reaction zone can be a shaft reduction furnace and the second reaction zone can be a melter gasifier. An auxiliary third reaction zone partially oxidizes a carbonaceous material to produce char for the third reaction zone. A reducing gas produced by partial oxidation of the char is used to effect the partial reduction conducted within the first reaction zone. Volatile substances contained within a heating gas produced by the partial oxidation within the auxiliary third reaction zone is further oxidized and used to preheat the iron ore within the first reaction zone.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: April 25, 2000
    Assignee: The BOC Group, Inc.
    Inventor: Donald Prentice Satchell, Jr.
  • Patent number: 5938815
    Abstract: An iron ore refining method in which a secondary reactor is employed for partly reducing iron ore and partly oxidizing a carbon containing substance to form partly reduced secondary iron ore, the coal char and a calorific containing carbon dioxide and carbon monoxide in a ratio of no less than about 0.25. The calorific gas is separated from the partly reduced secondary iron ore and the coal char and the resulting heated solids are introduced into the primary reactor without substantial cooling. All or part of the iron product is formed from the partly reduced iron ore produced in the primary reactor. Since the secondary reactor operates at a lower temperature than the primary reactor, part of the iron product is processed at a lower temperature to reduce oxygen requirements for the refining and to increase thermal efficiency.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: August 17, 1999
    Assignee: The BOC Company, Inc.
    Inventor: Donald Prentice Satchell, Jr.
  • Patent number: 5445667
    Abstract: A method of reducing material containing metal oxide in a circulating fluidized bed, in which coal in excess and air is introduced into the fluidization chamber so as to maintain a temperature of >850.degree. C. in the chamber. Bed material which has been separated from the flue gases is conveyed through a carbidization chamber in a recirculation system at a temperature of <850.degree. C. to the lower part of the fluidization chamber. Conditions favorable for formation of carbide are maintained in the carbidization chamber.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: August 29, 1995
    Assignee: A. Ahlstrom Corporation
    Inventor: Rolf Malmstrom
  • Patent number: 5364448
    Abstract: In a process and an apparatus for the production of liquid metal (4) from fine-grain metal oxide particles, the particles, together with hot reducing gas, are blown against a heated bulk material filter layer (9) of lump coal and/or ceramic pieces, a substantial proportion of the particles being retained on and in the filter layer and subjected to finishing reducing by the reducing gas. A high-temperature flame is produced in front of the filter layer (9) by an oxygen-bearing gas being blown against the filter layer, and the metallised particles which are retained in the filter layer are melted. They pass in the liquid condition through the filter layer (9) into a receiving space (3) for liquid metal (4).
    Type: Grant
    Filed: May 3, 1993
    Date of Patent: November 15, 1994
    Assignee: Kortec AG
    Inventor: Ralph Weber
  • Patent number: 4995904
    Abstract: A method is disclosed for pretreatment of a lumpy carbon carrier suitable for forming a fluidized bed and a solid bed used in the production of pig iron from iron ore. The ore is pre-reduced in at least one reduction plant and the thus produced iron sponge is subsequently final reduced and fused in a melt-down gasifier with the help of the lumpy carbon carrier and an oxygen-containing gas and is the carbon carrier is fed into the upper part and the oxygen-containing gas is fed into the lower part of the melt-down gasifier. These materials form, together with the iron sponge, a fluidized bed in the melt-down gasifier. Below the fluidized bed, a solid bed is formed consisting of said lumpy carbon carrier. A suitable carbon carrier may be formed by pretreating available coal by one of two methods. Lumpy coal tending to burst upon subjection to a shock-like thermal load is preheated for a minimum of one hour at a temperature of at least 300.degree. C.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: February 26, 1991
    Assignee: Deutsche Voest-Alpine Industrieanlagenbau GmbH
    Inventor: Rolf Hauk