With Melting Of Iron(fe) Product Patents (Class 75/475)
  • Patent number: 8545593
    Abstract: A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing iron compounds, by the steps: of mixing carbonaceous reductant, fluxing agent, and a binder with materials such as iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands, to form a mixture; forming agglomerates from the mixture; feeding the agglomerates to a melting furnace with other materials; melting the feed materials at a temperature of from 1500 to 1760° C. and forming a slag and hot metal; removing the slag; tapping the hot metal as liquid ferroalloy, and utilizing the off-gases from the melting furnace as combustion fuel to drive a turbine and to generate electricity.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 1, 2013
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Patent number: 8012236
    Abstract: It is an object of the present invention to provide a technique for solving the following problem by properly controlling the flow of gas such as air (oxidizing gas): a problem that the degree of reduction cannot be increased due to the air entering a feedstock-feeding zone or a discharging zone. The technique is a method for producing reduced iron. The method includes a feedstock-feeding step of feeding a feedstock containing a carbonaceous reductant and an iron oxide-containing material into a rotary hearth furnace, a heating/reducing step of heating the feedstock to reduce iron oxide contained in the feedstock into reduced iron, a melting step of melting the reduced iron, a cooling step of cooling the molten reduced iron, and a discharging step of discharging the cooled reduced iron, these steps being performed in that order in the direction that a hearth is moved.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: September 6, 2011
    Assignee: Kabushiki Kaisha Kobe Seiko Sho Kobe Steel, Ltd.
    Inventors: Koji Tokuda, Shoichi Kikuchi, Osamu Tsuge
  • Publication number: 20100126310
    Abstract: A method for producing pig iron by direct processing of ferrotitania sands, by the steps of: (a) mixing carbonaceous reductant, a fluxing agent, and a binder with titanium-containing materials selected from iron sands, metallic oxides, and/or iron ore concentrates, to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) melting the agglomerates at a temperature of from 1500 to 1760 C and forming hot metal with a slag thereon; (e) removing the slag; (f) tapping the hot metal; and (g) recovering the titanium and vanadium values.
    Type: Application
    Filed: August 12, 2008
    Publication date: May 27, 2010
    Inventor: Glenn E. Hoffman
  • Patent number: 6837916
    Abstract: A smelting reduction method comprising (a) charging a carbonaceous material and an ore into a reacting furnace to directly contact the carbonaceous material and the ore; (b) reducing the ore until at least a part of the ore is metallized, the resultant reduced ore containing at least a part of metallized metal being produced; (c) charging the carbonaceous material and the ore containing at least a part of the metallized metal from step (b) into a smelting furnace having a metal bath; and (d) blowing a gas containing 20% or more of oxygen into the metal bath in the smelting furnace to produce molten iron.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: January 4, 2005
    Assignee: NKK Corporation
    Inventors: Masahiro Kawakami, Terutoshi Sawada, Takeshi Sekiguchi, Masayuki Watanabe, Katsuhiro Iwasaki, Shinichi Isozaki, Junichi Fukumi
  • Patent number: 6383251
    Abstract: Solid state iron oxide reduction in a gas-solid reduction zone is combined with continuous melting of the hot solid reduced iron in a fuel-fired gas-solid-liquid melting zone within a rotary furnace by pneumatic transfer of the hot reduced iron by carrier gases through a transfer duct connected into an injection lance projecting into the melting zone and carrying a nozzle which directs a jet of hot reduced iron downwards into the metal bath, with a preferred embodiment of continually traversing the lance and thereby the jet of carrier gases and hot reduced iron longitudinally forwards and backwards enhancing heat transfer. The invention embraces a broad range of known solid-state reduction processes, classified either as: Group A. those employing gases within a gravity contact-supported or fluidized moving bed at substantial pressures of 1-5 atmospheres; or Group B. solid carbonaceous reductants in a rotary kiln or rotary hearth conducted at near ambient atmospheric pressure.
    Type: Grant
    Filed: September 30, 2000
    Date of Patent: May 7, 2002
    Inventor: William Lyon Sherwood
  • Publication number: 20010032527
    Abstract: Several methods and production facilities are provided in order to solve several problems encountered in conventional methods and facilities for producing reduced iron by reducing raw material pellets of a mixture of an iron oxide powder and a reducing material powder in a rotary bed-type reducing furnace and by melting the reduced iron in a sealed-type electro-blast furnace.
    Type: Application
    Filed: May 4, 2001
    Publication date: October 25, 2001
    Applicant: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hironori Fujioka, Hideaki Mizuki, Koichi Hirata, Shigeo Itano, Susumu Kamikawa, Hisao Teramoto, Takashi Yamane, Shigeki Sueda, Tetsumasa Kawamoto
  • Patent number: 6264724
    Abstract: A plant for producing sponge metal, in particular sponge iron, from charging materials consisting of metal ore or iron ore respectively, preferably in lumps and/or pellets, and optionally fluxes, comprising at least one first gas source (1, 3) dispensing a CO— and H2- containing feedgas, a CO2 elimination plant (17, 17′) and optionally a heating means (22, 25) for the feedgas from the first gas source (1, 3) is provided with a reduction reaction (20) which forms a further gas source for a CO— and H2-containing feedgas and serves for receiving metal ore, a reducing-gas feed duct (19) leading to this reduction reactor (20) and an export-gas discharge duct (31) from said further reduction reactor (20), wherein a conveying duct (30) for at least a portion of the export gas formed in the reduction reactor (20) and serving as a feedgas is flow-connected with the reducing-gas feed duct (19) of the reduction reactor (20) via a CO2 elimination plant and optionally a heating means.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: July 24, 2001
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Gerald Rosenfellner, Jörg Diehl
  • Patent number: 5782957
    Abstract: A process for treating iron-bearing material with a carbonaceous material to form a dry mixture, wherein the amount of carbonaceous material added exceeds the stoichiometric amount required to reduce the metal oxide to elemental metal. In one embodiment, the process also includes blending an organic binder with the dry mixture. The dry mixture is agglomerated to bond the dry mixture and form green compacts. The green compacts are loaded into a heated furnace and heated for about 5-12 minutes at a temperature of between about 2100.degree.-2500.degree. F. to reduce the iron oxide containing compacts to compacts containing elemental iron and an excess amount of carbonaceous material wherein the excess amount of carbonaceous material counteracts re-oxidation of the elemental iron. The reduced compacts are then discharged from the furnace.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: July 21, 1998
    Assignee: Maumee Research & Engineering, Inc.
    Inventors: Franklin G. Rinker, Deane A. Horne
  • Patent number: 5286273
    Abstract: This invention provides a method and apparatus whereby steel of various compositions may be produced from iron ore and coal through a series of stages without the intermediate production of liquid iron. A reforming reactor receives top gases from the steel making reactors, and converts them to high reduction potential gases which are returned to the steel making reactors. The iron ore and reductants, such as coal, are charged to a controlled atmosphere reactor which may be an inclined rotary cylindrical shaft. From the controlled atmosphere reactor the charge is moved to a potential shift reactor which is inclined or vertical and encounters increasing heat and rising gases for converting the carbonized sponge into a semi-molten state. The charge then passes to a high temperature reactor where it encounters the reducing gases from the reforming reactor and preheated oxygen to create temperature in which steel is made.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: February 15, 1994
    Inventor: Ghulam Nabi
  • Patent number: 4981510
    Abstract: A process and apparatus for producing ferrochromium having a carbon content ranging from about 0.02 to about 10 weight percent includes providing a mixture comprised of iron-containing chromium ore, coal, and at least one slag former selected from each of a slag former of group (a) and a slag former of group (b), wherein the slag former of group (a) is selected from the group consisting of CaO and MgO, wherein the slag former of group (b) is selected from the group consisting of Al.sub.2 O.sub.3 and SiO.sub.2, and wherein the mixture has an ore or coal ratio ranging from 1:0.4 to 1:2. The mixture is heated in a rotary furnace for a period ranging from 20 to 240 minutes in a CO-containing atmosphere and at a temperature ranging from 1480.degree. to 1580.degree. C. to provide a reaction product.
    Type: Grant
    Filed: August 4, 1989
    Date of Patent: January 1, 1991
    Assignee: Fried.Krupp Gesellschaft
    Inventors: Wilhelm Janssen, Klaus Ulrich