Treating Material In Gaseous Suspension Or Gaseous State Patents (Class 75/694)
  • Patent number: 8043408
    Abstract: A process and apparatus for producing lead and zinc from concentrates of zinc and lead sulfides or oxides includes the steps of: (a) mixing lead ore and/or zinc ore concentrates, iron bearing and carbon containing materials, metallic iron fines and iron oxide fines, carbonaceous reductant, fluxing agent, and a binder to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) maintaining a reducing atmosphere within the melting furnace; (e) vaporizing lead and zinc in the melting furnace at a temperature of 1000 to 1650 C, and removing the lead and zinc from the melting furnace in vaporized form; (f) cooling and condensing the metal vapors to liquid metal; and (g) separating the zinc and lead; and (h) recovering the lead and zinc metal separately.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 25, 2011
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Patent number: 6494933
    Abstract: The invention relates to a method of utilizing secondary raw materials containing iron, zinc and lead, preferably steelmaking dusts, in a rotary tubular furnace customarily equipped for the rolling process, with basically adjusted rolling slag. By reducing the portion of the carbon carriers in the burden, the energy balance of the rolling process is improved on one hand, and the throughput of the rotary tubular furnace used is increased on the other hand. By improving the quality of the rolling slag, the capability of utilizing the same is favored.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: December 17, 2002
    Assignees: B. U. S. Zinkrecycling Freiberg GmbH, FNE Forschungsinstitut fur Nichteisen-Metalle
    Inventors: Eberhard Saage, Uwe Hasche, Wolfgang Dittrich, Diethart Langbein
  • Patent number: 6464753
    Abstract: A method of processing flue dust that contains one or more compounds from a first group of zinc, lead and cadmium compounds, and contains iron compounds, involves heating the flue dust to cause a substantial portion of one or more of the compounds of the first group to become gas-borne. A carbonaceous material is introduced to the remaining flue dust, and the flue dust/carbonaceous material mixture is heated to cause a substantial portion of the remaining compounds from the first group to become gas-borne while retaining a substantial portion of the iron in a non-gas-borne condition. The gas-borne compounds are separated from the non-gas-borne compounds.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Maumee Research & Engineering, Incorporated
    Inventors: Deane A. Horne, Dennis W. Coolidge
  • Patent number: 6451086
    Abstract: A process for thermal treatment of residual materials containing heavy metal and iron oxide, including providing a multiple-hearth furnace having hearths provided one above the other, depositing the residual materials continuously on a top hearth of the hearths, gradually transferring the residual materials to lower hearths of the hearths, introducing reducing agents to at least one of the hearths and reacting the residual materials to form heavy metals and directly reduced iron, exhausting gases containing heavy metals from below hearths of the hearths where the heavy metals are being vaporised, re-injecting at least a part of the gases into the multiple-hearth furnace from above the hearths of the hearths where the heavy metals are being vaporised, and discharging the directly reduced iron together with residues of the reducing agents in an area of a bottom hearth of the hearths in the multiple hearth furnace.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: September 17, 2002
    Assignee: Paul Wurth S.A.
    Inventors: Thomas Hansmann, Romain Frieden, Marc Solvi
  • Patent number: 6391088
    Abstract: Process for thermal treatment of residual materials containing oil and iron oxide in a multiple-hearth furnace, which has several hearths one above the other, the residual materials containing oil and iron oxide being mixed with a solid reducing agent, introduced continuously into the multiple-hearth furnace, charged on the top hearth and transferred gradually to the lower hearths, the residual materials containing oil and iron oxide being dried in the top hearths, the oil subsequently evaporated and pyrolised and the reducing agent reacting with the iron oxides to form directly reduced iron, the directly reduced iron being discharged with residues of reducing agents in the areas of the bottom hearth of the multiple-hearth furnace.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: May 21, 2002
    Assignee: Paul Wurth S.A.
    Inventors: Thomas Hansmann, Romain Frieden, Marc Solvi
  • Patent number: 6379421
    Abstract: The present invention relates to a method and apparatus for separating undesired toxic metals, such as Zn, Pb and Cd, from iron-containing materials by: sintering a mixture of such materials (typically including EAF dust and mill scale) with carbonaceous particles to form sturdy sinter lumps; preheating such lumps in a non-reducing atmosphere, if needed, to achieve an elevated temperature generally above the vaporization temperature of the undesired metals, but below the sticking temperature of iron-containing lumps (which is typically below the vaporization temperatures of such undesired metals in their oxide form), feeding the lumps at such elevated temperature into a reduction reactor; flowing hot reducing gas through lumps to volatilize undesired reduced metals and carry the volatilized metals out of reduction reactor leaving the iron-containing lumps largely stripped of the undesired metals and ready for discharge and safe and/or useful disposal or re-use, and finally cooling the off gas from the reactor
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: April 30, 2002
    Assignee: Hylsa S.A. de C.V.
    Inventors: Mario Alberto Salinas-Fernández, Maria Teresa Guerra-Reyes, José Mariá Eloy Aparicio-Arranz, Juan Antonio Villarreal-Treviño, Miguel Angel Pedroza-Contreras
  • Patent number: 6332909
    Abstract: A processing apparatus capable of separating and recovering resins and metals, respectively, from an object being processed, which has resins and metals as its constituent, comprises a first gastight area (102), in which temperature and pressure are regulated so as to permit selective thermal decomposition of resins from the object (150) being processed, a second gastight area (103), which is partitioned from the first gastight area by an openable and closeable partition (105C) and in which temperature and pressure are regulated so as to permit selective vaporization of metals from the object, first recovering chamber (111) connected to the first gastight area for recovering gases produced by thermal decomposition of resins, and second recovering chamber (115) connected to the second gastight area for recovering vaporized metals.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: December 25, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Teshima, Tomohiro Todoroki, Terunobu Hayata, Fuminobu Tezuka, Masao Koyama, Naohiko Oyasato, Tomiaki Furuya, Yoshiaki Yokoyama, Teruhisa Ogihara, Kaichiro Ogihara
  • Patent number: 6241797
    Abstract: There is disclosed a process for reducing oxidic slags or combustion residues above a metal bath. The metal bath is formed of an iron alloy containing metals nobler than iron and whose redox potential is adjusted such FeO is reduced to Fe not at all or only partially.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: June 5, 2001
    Assignee: “Holderbank” Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6083294
    Abstract: A method of treating dust exhausted from a melting furnace in melting an iron-contained material, comprising the steps of: melting the iron-contained material, with air inside the melting furnace shut out from outside air and collecting the dust from the melting furnace into which a gas exhausted from the melting furnace and containing the dust is introduced; performing a lead-collecting process of collecting water, chloride, fluorine, and lead by heating the exhausted dust in vacuum; and performing a zinc-collecting process of collecting metallic zinc contained in the dust by heating a residue of the exhausted dust in vacuum.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: July 4, 2000
    Assignees: Aichi Steel Works, Ltd., Toyota Jidosha Kabushiki Kaisha, Toyokin Co., Ltd.
    Inventors: Toshikatsu Hara, Hirohiko Sasamoto, Yuji Okada, Kazuhiro Suzuki
  • Patent number: 6030433
    Abstract: A method for extracting metals from metal-containing materials, especially waste, by pyrohydrolysis. The metal-containing materials which contain at least one or more of the metals from the group consisting of Zn, Cd, Pb, Hg, Cu, Sn (as Sn(0) and Sn(II)), As, Sb, Au, Ag and Bi, are made to react at 700-1100.degree. C., advantageously 800-900.degree. C., with a gas composition which at least comprises 25-45% by volume of water vapor, 0-12% by volume of carbon dioxide, 2-20% by volume of hydrogen chloride, 0-15% by volume of carbon monoxide, the remainder being nitrogen and possibly oxygen. The metals from the above-mentioned group are extracted in the form of volatile metal chlorides.
    Type: Grant
    Filed: February 5, 1997
    Date of Patent: February 29, 2000
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek (TNO)
    Inventors: Hendrik Jan Luggenhorst, Edgar Manfred Lawrence Peek
  • Patent number: 5906671
    Abstract: A method for separation and recovery of metals and metal oxides from industrial minerals and waste materials containing zinc, lead, cadmium, arsenic, iron, mercury and selenium. The metals and metal oxides in dust form are mixed with a reducing agent and additives, agglomerated, heated above 800.degree. C., and contacted with a flow of inert, reducing or slightly oxidizing gases to volatilize the metals and metal oxides for recovering separate from solid residual product.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: May 25, 1999
    Assignee: Agglo Inc.
    Inventors: Paul S. Weinwurm, Lou Bodnar, Peter L. Weinwurm
  • Patent number: 5871561
    Abstract: Dusts containing zinc and/or lead in the form of oxides and one or more reducing agents are mixed with each other before or after being introduced into a heat treatment furnace. The mixture is heated to a given temperature range under a substantial vacuum so that the zinc and/or lead in the form of oxides are reduced to zinc and/or lead in the state of pure metals and evaporated in the furnace. The evaporated zinc and/or lead are introduced into a retrieving container also under a substantial vacuum and at a given temperature where the evaporated zinc and/or lead pure metals are condensed and retrieved.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: February 16, 1999
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aichi Steel Works, Ltd., Toyokin Kabushiki Kaisha
    Inventors: Yuji Okada, Hirokazu Shirakawa, Masamichi Okada, Toshikatsu Hara, Hirohiko Sasamoto, Kazuhiro Suzuki
  • Patent number: 5776226
    Abstract: A method for working up refuse or metal-oxide-containing refuse incineration residues or metallurgical residues includes an at least partial oxidation in a meltdown oxidizing reactor followed by a two-stage reduction. The first reduction stage is effected in an iron bath reactor in which iron oxides are not yet reduced. In the second reduction stage also iron oxides are reduced in an iron bath calciner, a pig iron bath being obtained. The metal bath discharged from the iron bath reactor reaches a segregation mold, from which crude bronze can be drawn off.
    Type: Grant
    Filed: October 5, 1995
    Date of Patent: July 7, 1998
    Assignee: "Holderbank" Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 5735933
    Abstract: A processing method by which metals may be recovered at a high purity from metal-containing waste materials.The method for processing metal-containing waste materials comprises crushing a metal-containing waste material to a particle size of 1-50 mesh, separating and recovering the metal-containing particles from the crushed portion, introducing the metal-containing particles into a vacuum heating furnace, pre-heating the furnace while under suction evacuation, and then raising the temperature of the furnace in stages while continuing the vacuum suctioning, recovering the metal and non-metal vapor produced at each temperature level using a condensing and adsorbing means, and recovering the liquated metals as melts. The method may be used to process waste batteries, copper-containing waste materials and the like in the same manner to recover high-purity metals.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: April 7, 1998
    Assignee: Teruhisa Ogihara
    Inventors: Yoshiaki Yokoyama, Teruhisa Ogihara
  • Patent number: 5565016
    Abstract: The invention relates to a method and an apparatus for the suspension smelting of suifidic, finely divided raw materials containing metals, such as copper, nickel and lead, by using oxygen enrichment. In this method into the suspension smelting furnace (1) there is fed the raw material (4,5) to be smelted together with flux (6) and oxidizing gas (7) and the walls (18) of the reaction space of the suspension smelting furnace are cooled and at least two molten phases created (16,17). According to the invention the degree of oxygen enrichment of the oxidizing gas is at least 40% in order to raise the temperature of the particles in suspension to at least 200.degree. C.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: October 15, 1996
    Assignee: Outokumpu Engineering Contractors Oy
    Inventors: Pekka Hanniala, Risto Saarinen, Erkki Krogerus, Iikka Kojo
  • Patent number: 5547490
    Abstract: The foundry dust is fed to a first furnace atmosphere which is preferably at 1000.degree. to 1100.degree. C. With the dust pellet being continuously rolled around, it remains therein until in particular chlorine, alkali and lead compounds have almost completely evaporated out of the dust. Experience has shown this takes an hour. In that operation a scavenging gas flow is fed to the furnace atmosphere whereby the lead-chlorine-alkali vapour produced in the rotary cylindrical furnace is passed out of sane to a condensation and filtering apparatus.Reducing agent, in particular coal, is then introduced into the foundry dust and same is fed to a further furnace atmosphere which in particular is at 1150.degree. to 1350.degree. C., where it is continuously rolled around.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: August 20, 1996
    Assignee: Sudweststahl GmbH
    Inventors: Heinz-Peter Discher, Ekkehard Greinacher, Hans Banski
  • Patent number: 5474592
    Abstract: Residual metallurgical materials which contain zinc and lead are reprocessed by a thermal treatment in a circulating fluidized bed. The required heat is generated in that solid carbon is combusted in the fluidized bed reactor of the circulating fluidized bed. A solid carbon content of 5 to 30% is maintained in the lower part of the fluidized bed. Oxygen-containing gases are supplied to the upper part of the fluidized bed reactor, and CO.sub.2 is formed only in such an amount that zinc metal will not be reoxidized. Substantially all solids are removed from the discharged suspension in a recycle cyclone and are recycled. The gas is cooled to a temperature at which zinc metal is oxidized to ZnO. The dustlike compounds of zinc and lead are separated from the gas.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: December 12, 1995
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Wolfgang Bresser, Martin Hirsch, Albert Kaune, Uwe Harter
  • Patent number: 5358548
    Abstract: Metal vapor, for example zinc fume in the offgas of a smelting furnace, is captured by bringing the stream into direct contact with a fluidized bed of solid particles having a particulate loading of greater than 10 kg/m.sup.3 and preferably greater than 400 kg/m.sup.3. The thermal mass and temperature of the bed is such as to rapidly quench the vapor in the case of zinc from above 960.degree. C. to below 419.degree. C. in less than 100 milliseconds, whereby the vapor condenses in the bed and is recovered as zinc metal in acceptable yield.
    Type: Grant
    Filed: June 29, 1991
    Date of Patent: October 25, 1994
    Assignees: Mount Isa Mines Limited, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Roger L. Player, Rodney J. Dry
  • Patent number: 5338336
    Abstract: The present invention provides a method for processing environmentally undesirable materials including petroleum coke and the sulfur and heavy metals contained therein and agglomerated waste dust from an electric arc furnace and the zinc, cadmium, lead and iron oxides contained therein and of providing fuel and a charging material for a process of making molten iron or steel preproducts and reduction gas in a melter gasifier. Metallized arc furnace waste dust material from a reduction furnace is introduced into the melter gasifier. The petroleum coke, oxygen and metallized waste dust material are reacted to produce reduction gas and molten iron from the iron oxides in the waste dust material. The molten iron contains the metals freed from combustion of the petroleum coke. The reduction gas is removed from the melter gasifier for use in the reduction furnace to produce an top off gas containing vapors of zinc, cadmium and lead.
    Type: Grant
    Filed: June 30, 1993
    Date of Patent: August 16, 1994
    Assignee: Bechtel Group, Inc.
    Inventor: Richard B. Greenwalt
  • Patent number: 5258055
    Abstract: A process is provided for condensing zinc and other metal vapors from a gaseous stream. A duplex condensing bath is provided, having a bottom layer of molten zinc and a top layer comprising a liquid condensing medium, such as a molten salt. The molten salt is inert to, immiscible with, and less dense than the molten zinc, and has a negligible zinc vapor pressure even at temperatures greater than 700.degree. C. The molten salt condensing medium is splashed into, or otherwise contacted with the gaseous stream, causing condensation of the zinc and other metal vapors, which then partition with the molten zinc layer of the duplex condensing bath.The process of the present invention is a significant improvement over current molten zinc-type splash condenser systems. The negligible zinc vapor pressure of the molten salt layer permits operating temperatures of 700.degree. C.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: November 2, 1993
    Assignee: International Mill Service, Inc.
    Inventors: John Pargeter, David T. Bunney
  • Patent number: 5013355
    Abstract: Method and apparatus for producing matte and/or metal from sulphidic fine-grained ore or ore concentrate. The ore or ore concentrate is smelted in a flame chamber in such a way that at least part of the solid material in the flame chamber melts and flows downward into a smelt bath furnace, on top of which the flame chamber is disposed. Volatile metallic and sulphuric components are conducted upward from the flame chamber to a fluidized bed reactor to be utilized as fluidizing gas, the gases being rapidly cooled down in the fluidized bed.
    Type: Grant
    Filed: March 15, 1989
    Date of Patent: May 7, 1991
    Assignee: A. Ahlstrom Corporation
    Inventors: Hans I. Elvander, Rolf E. Malmstrom