Friction Force Microscopy (epo) Patents (Class 850/34)
  • Patent number: 8997261
    Abstract: The invention relates to processes for the modification of surfaces and on processes for the measurement of adhesion forces and of different forces of interaction (friction forces, adhesion forces) by scanning probe microscopy functioning in continuous <<curvilinear>> mode, as well as to a scanning probe microscope and a device permitting the implementation of said processes.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 31, 2015
    Assignees: Centre National de la Recherche Scientifique-CNRS, Universite du Maine (Le Mans)
    Inventors: Olivier Noel, Pierre-Emmanuel Mazeran, Hussein Nasrallah
  • Publication number: 20140352006
    Abstract: A mechanism is provided for sequencing a biopolymer. The biopolymer is traversed from a first medium to a second medium. The biopolymer includes bases. As the biopolymer traverses from the first medium to the second medium, different forces are measured corresponding to each of the bases. The bases are distinguished from one another according to the different measured forces which are measured for each of the bases.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Venkat K. Balagurusamy, Stanislav Polonsky
  • Patent number: 8689359
    Abstract: The present invention relates to an apparatus and a method for investigating surface properties of different materials, which make it possible to carry out atomic force microscopy with a simplified and faster shear force method. The apparatus according to the invention is characterized by perpendicular orientation of the measuring tip of a self-actuated cantilever with respect to the surface of the sample. A piezoresistive sensor and a bimorph actuator are preferably DC-isolated. The measuring tip is in the form of a carbon nanotube, in particular. A plurality of cantilevers can be arranged in the form of a cantilever array which is characterized by a comb-like arrangement of individual pre-bent cantilevers. The method according to the invention is distinguished by a fast feedback signal on account of the distance between the measuring tip and the surface to be investigated being regulated using the change in a DC signal which supplies the actuator.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 1, 2014
    Assignee: Nano Analytik GmbH
    Inventors: Ivo W. Rangelow, Tzvetan Ivanov, Burkhard Volland, Teodor Gotszalk, Miroslaw Woszczyna, Jerzy Mielczarski, Yanko Sarov
  • Patent number: 8003283
    Abstract: This invention provides the user the ability to accurately nanomachine surfaces with reduced tip induced errors. Nanomaching has two types of errors, a first type of error is brought about by the tip's shape and its aspect ratio. A second type of error due to the tip's deflection as it works the material. Therefore, embodiments of the present invention minimizes tip deflection errors allowing allow high aspect Nano-bits to reliably and accurately nanomachine small high aspect three dimensional structures to repair and rejuvenate photomasks.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: August 23, 2011
    Assignee: Rave LLC
    Inventor: Tod Evan Robinson
  • Patent number: 7810382
    Abstract: The invention relates to a method of determining material properties of a contact formed between a measurement tip of a microscopic probe and a sample surface of a sample material. According to the method, a distance modulation is applied for modulating a distance between a support of the microscopic probe end the sample surface in a direction essentially normal to the sample surface and wherein a normal force signal indicative of a normal force is measured and demodulated. In the method it is proposed that the material properties be determined using measurement data comprised in the demodulated normal force signal and related to a (concave) buckling deformation of the microscopic probe relative to and away from the sample surface.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: October 12, 2010
    Assignee: Karlsruher Institut für Technologie
    Inventors: Thomas Schimmel, Matthias Müller