Self-detecting Probes (epo) Patents (Class 850/7)
  • Patent number: 9224574
    Abstract: Beam scanning for obtaining a scanned image is performed by an aberration corrector, which is an aberration measured lens, and a scanning coil disposed above an objective lens, instead of a scanning coil ordinarily placed on the objective lens. Thus, distortion with an aberration of an aberration measured lens is scanned on the surface of a sample, and then a scanned image is formed from a scattered electron beam, a transmission electron beam, or a reflected/secondary electron beam that is generated by the scan, achieving a scanning aberration information pattern equivalent to a conventional Ronchigram. Such means is a feature of the present invention.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 29, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takaho Yoshida, Hisanao Akima
  • Patent number: 9057706
    Abstract: An apparatus for detecting a deflection of a beam, the apparatus comprising a beam having a first side and a second side; and a grating structure positioned adjacent the second side of the beam, the grating structure including an interrogating grating coupler configured to direct light towards the beam; wherein the beam and the interrogating grating coupler form a resonant cavity, and light input to the resonant cavity is modulated according to the deflection of the beam.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: June 16, 2015
    Assignee: UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: John Marcel Dell, Mariusz Martyniuk, Adrian John Keating, Gino Michael Putrino, Lorenzo Faraone, Dilusha Silva
  • Patent number: 8875311
    Abstract: An apparatus and method directed to a scanning probe microscopy cantilever. The apparatus includes body and an electromagnetic sensor having a detectable electromagnetic property varying upon deformation of the body. The method includes scanning the surface of a material with the cantilever, such that the body of the cantilever undergoes deformations and detecting the electromagnetic property varying upon deformation of the body of the cantilever.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jens Hofrichter, Felix Holzner, Folkert Horst, Philip Paul
  • Patent number: 8832859
    Abstract: A probe alignment tool (10) for scanning probe microscopes utilizes an attached relay optics to view the scanning probe microscope probe tip (40) and align its image in the center of the field of view of an optical microscope (36). Adjustments to optical microscope motorized stages (50) and (60) along with adjustments of scanning probe microscope stages (44), (46) and (58) allow determination of a path and distance from the center of the field of view to the probe tip (40). From such determination a target area to be examined by the scanning probe microscope may be positioned precisely and accurately under the probe tip (40). Replacement of a scanning probe microscope probe tip (40) in an atomic force microscope unit (42) may be accomplished without the loss of alignment measurements.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 9, 2014
    Inventor: Ali R. Afshari
  • Patent number: 8769711
    Abstract: The invention relates to a method for examining a measurement object (2, 12), in which the measurement object (2, 12) is examined by means of scanning probe microscopy using a measurement probe (10) of a scanning probe measurement device, and in which at least one subsection (1) of the measurement object (2, 12) is optically examined by an optical measurement system in an observation region associated with the optical measurement system, wherein a displacement of the at least one subsection (1) of the measurement object (2, 12) out of the observation region which is brought about by the examination by means of scanning probe microscopy is corrected in such a way that the at least one displaced subsection (1) of the measurement object (2, 12) is arranged back in the observation region by means of a readjustment device which processes data signals that characterize the displacement.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 1, 2014
    Assignee: JPK Instruments AG
    Inventor: Torsten Jähnke
  • Patent number: 8713711
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 29, 2014
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8689359
    Abstract: The present invention relates to an apparatus and a method for investigating surface properties of different materials, which make it possible to carry out atomic force microscopy with a simplified and faster shear force method. The apparatus according to the invention is characterized by perpendicular orientation of the measuring tip of a self-actuated cantilever with respect to the surface of the sample. A piezoresistive sensor and a bimorph actuator are preferably DC-isolated. The measuring tip is in the form of a carbon nanotube, in particular. A plurality of cantilevers can be arranged in the form of a cantilever array which is characterized by a comb-like arrangement of individual pre-bent cantilevers. The method according to the invention is distinguished by a fast feedback signal on account of the distance between the measuring tip and the surface to be investigated being regulated using the change in a DC signal which supplies the actuator.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 1, 2014
    Assignee: Nano Analytik GmbH
    Inventors: Ivo W. Rangelow, Tzvetan Ivanov, Burkhard Volland, Teodor Gotszalk, Miroslaw Woszczyna, Jerzy Mielczarski, Yanko Sarov
  • Patent number: 8677511
    Abstract: The present disclosure describes an apparatus of leveling a substrate in a charged particle lithography system. In an example, the apparatus includes a cantilever-based sensor that includes an optical sensor and a cantilever structure. The optical sensor determines a distance between the optical sensor and a surface of the substrate based on light reflected from the cantilever structure. In an example, a first distance is between the cantilever structure and optical sensor, a second distance is a height of the cantilever structure, and a third distance is between the optical sensor and the surface of the substrate. The optical sensor determines the first distance based on the light reflected from the cantilever structure, such that the third distance is determined from the first distance and the second distance.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chi Wang, Jeng-Horng Chen
  • Patent number: 8650660
    Abstract: An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode being workable across varying environments, including gaseous, fluidic and vacuum. Ease of use is facilitated by eliminating the need for an expert user to monitor imaging.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Bruker Nano, Inc.
    Inventors: Jian Shi, Yan Hu, Shuiqing Hu, Ji Ma, Chanmin Su
  • Patent number: 8528110
    Abstract: A probe detection system (74) for use with a scanning probe microscope comprises both a height detection system (88) and deflection detection system (28). As a sample surface is scanned, light reflected from a microscope probe (16) is separated into two components. A first component (84) is analysed by the deflection detection system (28) and is used in a feedback system that maintains the average probe deflection substantially constant during the scan. The second component (86) is analysed by the height detection system (88) from which an indication of the height of the probe above a fixed reference point, and thereby an image of the sample surface, is obtained. Such a dual detection system is particularly suited for use in fast scanning applications in which the feedback system is unable to respond at the rate required to adjust probe height between pixel positions.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: September 3, 2013
    Assignee: Infinitesima Ltd.
    Inventor: Andrew Humphris
  • Patent number: 8479308
    Abstract: A scanning probe microscope includes: a first and second probes for scanning a sample while maintaining the distance to the sample surface; crystal oscillators holding each of the first and second probes; and a modulation oscillator for providing the first probe with a vibration of a specific frequency which is different from the resonant frequency of each crystal oscillator. A control unit monitors the vibration of the specific frequency of the first and second probes, detects proximity of the first probe and the second probe to each other based on the change of the specific frequencies, and controls the drive of the first and second probes.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Kyoto University
    Inventors: Katsuhito Nishimura, Yoichi Kawakami, Mitsuru Funato, Akio Kaneta, Tsuneaki Hashimoto
  • Patent number: 8434161
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 30, 2013
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8434160
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 30, 2013
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8387159
    Abstract: The present invention provides a fast-operating and stable scanning probe microscope configured to detect the interaction between a probe and a sample to avoid generation of a harmonic component. An oscillation circuit (31) generates an excitation phase signal indicative of the phase of an excitation signal. An excitation signal generation circuit (33) generates an excitation signal from the excitation phase signal. A complex signal generation circuit (35) generates a complex signal from a displacement signal. A vector calculation circuit (37) calculates the argument of the complex signal. A subtracting phase comparator (39) compares the argument with the phase of the excitation phase signal by subtraction. The amount of the interaction between a probe device and a sample is obtained using the subtracting phase comparator (39). The result of the comparison carried out by the subtracting phase comparator (39) may be output as a difference in phase between the displacement signal and the excitation signal.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: February 26, 2013
    Assignees: National University Corporation
    Inventors: Takeshi Fukuma, Yuji Mitani
  • Patent number: 8322220
    Abstract: A method, and corresponding apparatus, of imaging sub-surface features at a plurality of locations on a sample includes coupling an ultrasonic wave into a sample at a first lateral position. The method then measures the amplitude and phase of ultrasonic energy near the sample with a tip of an atomic force microscope. Next, the method couples an ultrasonic wave into a sample at a second lateral position and the measuring step is repeated for the second lateral position. Overall, the present system and methods achieve high resolution sub-surface mapping of a wide range of samples, including silicon wafers. It is notable that when imaging wafers, backside contamination is minimized.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: December 4, 2012
    Assignee: Veeco Instruments Inc.
    Inventors: Craig Prater, Chanmin Su
  • Patent number: 8321959
    Abstract: An atomic force microscopy sensor includes a substrate, a cantilever beam and an electrostatic actuator. The cantilever beam has a proximal end and an opposite distal end. The proximal end is in a fixed relationship with the substrate and the cantilever beam is configured so that the distal end is in a moveable relationship with respect to the substrate. The electrostatic actuator includes a first electrode that is coupled to the cantilever beam adjacent to the proximal end and a spaced apart second electrode that is in a fixed relationship with the substrate. When an electrical potential is applied between the first electrode and the second electrode, the first electrode is drawn to the second electrode, thereby causing the distal end of the cantilever beam to move.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: November 27, 2012
    Assignee: Georgia Tech Research Corporation
    Inventor: Fahrettin Levent Degertekin
  • Patent number: 8220067
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 10, 2012
    Assignee: Board of Regents of the Nevada System of Higher Education
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8161568
    Abstract: A cantilever has a probe portion and a cantilever portion having a free end portion from which the probe portion extends. A displacement detecting portion detects a displacement of the cantilever portion according to an interaction between a sample and the probe portion. An electrode portion is connected to the displacement detecting portion. An insulation film is formed over at least one of the electrode portion and the displacement detecting portion. A functional coating in the form one of a conductive film, a magnetic film, and a film having a light intensity amplifying effect is disposed on the insulation film.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 17, 2012
    Assignee: SII NanoTechnology Inc.
    Inventors: Masato Iyoki, Naoya Watanabe
  • Patent number: 7874016
    Abstract: To realize to adapt to a shape of a surface, shorten a measurement time period and promote a measurement accuracy by setting a sampling interval in accordance with a slope of the shape of the surface and controlling a stylus in accordance with the interval, there is provided a scanning probe microscope, in which in scanning the stylus, an observation data immediately therebefore is stored as a history, the sampling interval in X or Y direction is set at each time based on a shape of the observation data, and the stylus is scanned to a successive sampling position.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: January 18, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Takeshi Umemoto, Norio Ookubo
  • Patent number: 7854016
    Abstract: A process manufactures a probe intended to interact with a storage medium of a probe-storage system, wherein a sacrificial layer is deposited on top of a substrate; a hole is formed in the sacrificial layer; a mold layer is deposited; the mold layer is etched via the technique for forming spacers so as to form a mold region delimiting an opening having an area decreasing towards the substrate. Then a stack of conductive layers is deposited on top of the sacrificial layer, the stack is etched so as to form a suspended structure, formed by a pair of supporting arms arranged to form a V, and an interaction tip projecting monolithically from the supporting arms. Then a stiffening structure is formed, of insulating material, and the suspended structure is fixed to a supporting wafer. The substrate, the sacrificial layer, and, last, the mold region are then removed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 14, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventor: Agostino Pirovano
  • Publication number: 20100306885
    Abstract: An atomic force microscopy sensor includes a substrate, a cantilever beam and an electrostatic actuator. The cantilever beam has a proximal end and an opposite distal end. The proximal end is in a fixed relationship with the substrate and the cantilever beam is configured so that the distal end is in a moveable relationship with respect to the substrate. The electrostatic actuator includes a first electrode that is coupled to the cantilever beam adjacent to the proximal end and a spaced apart second electrode that is in a fixed relationship with the substrate. When an electrical potential is applied between the first electrode and the second electrode, the first electrode is drawn to the second electrode, thereby causing the distal end of the cantilever beam to move.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 2, 2010
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventor: Fahrettin L. Degertekin
  • Patent number: 7797757
    Abstract: An atomic force microscopy sensor includes a substrate, a cantilever beam and an electrostatic actuator. The cantilever beam has a proximal end and an opposite distal end. The proximal end is in a fixed relationship with the substrate and the cantilever beam is configured so that the distal end is in a moveable relationship with respect to the substrate. The electrostatic actuator includes a first electrode that is coupled to the cantilever beam adjacent to the proximal end and a spaced apart second electrode that is in a fixed relationship with the substrate. When an electrical potential is applied between the first electrode and the second electrode, the first electrode is drawn to the second electrode, thereby causing the distal end of the cantilever beam to move.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 14, 2010
    Assignee: Georgia Tech Research Corporation
    Inventor: Fahrettin Levent Degertekin
  • Patent number: 7694346
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 6, 2010
    Assignee: Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Publication number: 20100017921
    Abstract: The invention relates to a device and a method for the micromechanical positioning and handling of an object. The aim of the invention is to provide a device and an associated method for the micromechanical positioning and handling of objects by means of which the scanning speed can be increased and the positional accuracy be improved so that real time images or video rate images (ca. 25 images per second) having a lateral and vertical resolution in the nanometer range can be achieved. According to the invention, a monolithic component, preferably made of silicon, comprises a support element, an object carrier, a plurality of guide elements and elements for transmitting the movement, the preferably piezoresistive drive elements and the preferably piezoresistive position detectors being integrated into said monolithic component; Said micromechanical positioning device can be used, for example, in scanning probe microscopy and in nanopositioning and nanomanipulation technology.
    Type: Application
    Filed: January 28, 2008
    Publication date: January 21, 2010
    Applicant: TECHNISCHE UNIVERSITAET ILMENAU
    Inventors: Ivo W. Rangelow, Stefan Klett, Eishad Guliyev, Tzvetan Ivanov, Burkhard Volland