Characterized By Control Of Braking (e.g., Blending Of Regeneration, Friction Braking) (epo/jpo) Patents (Class 903/947)
  • Patent number: 11639094
    Abstract: A hybrid drivetrain is provided. The hybrid drivetrain comprises a power source, a transmission, and a tandem axle assembly. The transmission includes a primary clutch and is drivingly engaged with the power source. The tandem axle assembly includes a first axle and a second axle and is drivingly engaged with the transmission. One of the transmission and the tandem axle assembly includes a first motor generator in electrical communication with a battery. The first motor generator and the primary clutch facilitate operating the hybrid drivetrain as a hybrid drivetrain in a plurality of operating modes. The hybrid drivetrain may further comprise second and third motor generators in electrical communication with the battery to facilitate operating the hybrid drivetrain in a plurality of operating modes.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: May 2, 2023
    Assignee: Dana Heavy Vehicle Systems Group, LLC
    Inventors: Raymond J. Haka, Krishna Kumar, Steven J. Wesolowski, James F. Ziech
  • Patent number: 11623629
    Abstract: A controller, responsive to accelerator pedal release and a speed of the vehicle being less than a threshold, operates an electric machine to provide braking torque according to a predetermined speed versus time profile that defines a predetermined duration for the speed to become zero and a target speed for each time instant during the predetermined duration such that, for a given one of the time instants, the electric machine increases the braking torque responsive to the speed being greater than the target speed and decreases the braking torque responsive to the speed being less than the target speed.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 11, 2023
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Bryan Michael Bolger, Sergey Gennadievich Semenov
  • Patent number: 11485363
    Abstract: The braking force control device detects an impossible state where one or some of the actuators are temporarily unable to generate a negative driving force, and a predictive state where one or some of the actuators are predicted to become unable to generate a negative driving force. Every time the coasting state occurs before establishment of the impossible state and after establishment of the predictive state, the braking force control device gradually increases the negative driving force generated by the corresponding one or ones of the actuators. Even when the coasting state occurs in the impossible state, the braking force control device does not cause the corresponding one or ones of the actuators to generate a driving force. Every time the coasting state occurs after the impossible state, the braking force control device gradually decreases the negative driving force generated by the corresponding one or ones of the actuators.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: November 1, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tsutomu Kawanishi, Shun Sato, Masahiro Nishiu
  • Patent number: 9039568
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an electrical load may be automatically activated to consume electrical energy produced during driveline braking so that driveline braking may be extended. The electrical load may be a windscreen heater or other device.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Alex O'Connor Gibson, Jeffrey Allen Doering, James William Loch McCallum, David Oshinsky
  • Publication number: 20150134162
    Abstract: A hybrid vehicle includes an engine and an electric machine, both capable of propelling the vehicle. The electric machine is electrically connected to a high voltage traction battery. The state of charge of the battery can decrease if the battery is used to power the electric machine, and can increase if the electric machine supplies power to the battery via regenerative braking. Constraints are placed on the vehicle such that the battery operates within a preferred operating window, defined between minimum and maximum state of charge thresholds. At least one controller is programmed to alter the preferred operating window of the battery in response to various vehicular activities, such as when the vehicle is towing another object, or when the vehicle weighs above a certain threshold due to contents within the vehicle, for example.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Mark Steven YAMAZAKI, Wei LIANG, Xiaoyong WANG, Rajit JOHRI, Ryan Abraham MCGEE, Ming Lang KUANG
  • Patent number: 9031727
    Abstract: A vehicle running control device in a vehicle includes a power connecting/disconnecting device interrupting power transmission between an engine and drive wheels, the vehicle running control device providing free-run control of interrupting the power transmission with the power connecting/disconnecting device and stopping the engine during inertia running, the vehicle running control device being configured to determine a target vehicle deceleration at the start of the free-run control based on a vehicle speed and to estimate an estimated vehicle deceleration when the free-run control is started, before starting the free-run control, and when the estimated vehicle deceleration is closer to the target vehicle deceleration at the start of the free-run control, the free-run control being more easily provided.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Patent number: 9020674
    Abstract: A regenerative braking system for a vehicle utilizing diversion of energy for efficient use or maintaining consistent vehicle performance. The regenerative braking system includes a generator for producing regenerative energy during slowing and includes switches connected to a battery and a plurality of devices. A processor is connected with the battery and the switches for controlling the configuration of the switches based on a characteristic of the battery. If the battery has a state of charge exceeding a predetermined threshold, the processor controls the switches to route the regenerative energy to the other devices. The processor also controls the switches to provide regenerative energy to specific devices where it may most desirably be utilized. Heating and cooling units of the vehicle may be alternatively or simultaneously connected to receive the regenerative energy for providing consistent vehicle slowing performance when the battery state of charge exceeds the predetermined threshold.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Christopher Gregg, Justin Ward, Hidetoshi Kusumi
  • Publication number: 20150105215
    Abstract: A hybrid vehicle having a brake function includes a hybrid starter and generator (HSG) for starting an engine or generating electricity by the engine. A clutch is disposed on a route for transmitting torque of the engine to a wheel, wherein the clutch selectively transmits the torque. A motor is disposed at a rear side of the clutch on the route, wherein the motor adds torque or generates electricity. An inverter is electrically connected to the HSG and the motor, and a battery is electrically connected to the inverter, wherein the battery stores or outputs electrical energy. A controller releases the clutch, controls the motor to generate the electricity through the torque transmitted from the wheel to the motor, and controls the HSG to consume the electricity generated from the motor, if a braking demand condition is satisfied.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 16, 2015
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventor: JOONYOUNG PARK
  • Patent number: 9005075
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a driveline may selectively enter a sailing mode to provide quick driveline torque response with reduced impact on fuel economy.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 14, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Seung-Hoon Lee
  • Publication number: 20150094189
    Abstract: A vehicular system includes a crankshaft, a drive shaft, a plurality of electromagnetic machines mechanically coupling the crankshaft to the drive shaft, a power controller electrically coupled to the plurality of electromagnetic machines and configured to control current and/or voltage provided to, or received from, each electromagnetic machine of the plurality of electromagnetic machines, a supervisory controller communicatively coupled with the power controller and configured to establish an operational mode for the power controller, and a storage device electrically coupled to the power controller to store energy captured by the power controller.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Applicant: The Regents of the University of Michigan
    Inventor: Bogdan I. Epureanu
  • Publication number: 20150087475
    Abstract: A method for controlling vehicle regenerative braking includes decreasing regenerative braking, provided a converter clutch is locked, such that regenerative braking torque reaches zero before a converter clutch opens due to vehicle speed reaching a reference speed; decreasing regenerative braking, provided the converter clutch is scheduled to open, such that regenerative braking torque reaches zero before the converter clutch opens due to vehicle speed reaching the reference speed; and braking the vehicle using wheel brakes.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Zhengyu Dai, Yanan Zhao, Felix Nedorezov, Mark S. Yamazaki, Philip J. Wiethe, JR.
  • Publication number: 20150087474
    Abstract: A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; and an engine, first and second electric motors and an output rotary member which are respectively connected to the four rotary elements. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The drive control device comprises: an engagement control portion configured to place the clutch or the brake in a slipping state in a decelerating state of the hybrid vehicle in a hybrid drive mode in which the engine is operated.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 26, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomoya Matsubara, Kazuyuki Shiiba, Hiroaki Kiyokami
  • Patent number: 8983723
    Abstract: Braking/driving force control that includes: detecting a driver's operating state for causing the vehicle to run; detecting a vehicle body motional state while the vehicle is running; computing a target longitudinal driving force for causing the vehicle to run and motional state amounts for controlling a vehicle body behavior on the basis of the detected operating state and motional state; and computing driving or braking forces allocated to the wheels so as to achieve the computed target longitudinal driving force and target motional state amounts and that the braking/driving force generating mechanism causes the wheels to generate independently.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Etsuo Katsuyama
  • Publication number: 20150073644
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, negative torque of an electric machine is adjusted to mimic negative torque of an engine during engine braking so that the vehicle may transition from regenerative braking to engine braking in a seamless manner.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Gregory Michael Pietron
  • Patent number: 8977418
    Abstract: A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 10, 2015
    Assignee: International Truck Intellectual Property Company, LLC
    Inventor: Jay E. Bissontz
  • Publication number: 20150066269
    Abstract: A distance sensor detects a distance to an object in front of a vehicle. An ECU executes pre-crash control when the detected distance becomes equal to or smaller than a prescribed value. A regeneration level selector selects a regeneration level of a motor in accordance with driver's operation. A motor makes regenerative braking force at the time of turning off an accelerator larger when the selected regeneration level is high than when the selected regeneration level is low. The ECU makes the prescribed value larger when the selected regeneration level is low than when the selected regeneration level is high.
    Type: Application
    Filed: July 16, 2014
    Publication date: March 5, 2015
    Inventor: Kuniaki NIIMI
  • Patent number: 8955626
    Abstract: A vehicle (100) comprising an engine (103) arranged to apply a first drive torque to a first wheel (101) for moving the vehicle (100); and an electric motor (40) arranged to apply a second drive torque to a second wheel (101) for moving the vehicle (100) when in a drive mode and to generate a current when placed in a braking mode of operation and the electric motor (40) is being driven by the second wheel (101), wherein the electric motor (40) is arranged to operate in the braking mode when the engine (103) is applying a drive torque to the first wheel (101).
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 17, 2015
    Assignee: Protean Electric Limited
    Inventor: Neil Trueman
  • Publication number: 20150027798
    Abstract: A vehicle control apparatus according to the present invention includes a PHEV-ECU containing a measuring unit which measures the amount of torsional stress on the front drive shafts in a parking lock state and a control unit which controls the torque of the front motor. When the parking lock state is released, the torque acting as a load on the rotation of the first motor upon the release of the torsional stress on the drive shaft, is determined based on the torsional stress measured. Further, the front motor is controlled to output the determined torque.
    Type: Application
    Filed: April 17, 2014
    Publication date: January 29, 2015
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventor: Takeo NAGAMORI
  • Publication number: 20150031487
    Abstract: A vehicle drive device having a control device making another first planetary gear device constituent member and a second planetary gear device constituent member non-rotatable by a brake to perform electric motor running for running with power of a second electric motor while an engine is put into a non-drive state, when the engine is started during the electric motor running the control device causing a first electric motor to rotate the engine while the other first planetary gear device constituent member and the one second planetary gear device constituent member are kept non-rotatable by the brake, and when the brake is released after start of the engine, the control device controlling the first electric motor before release of the brake so a torque applied to the brake due to power of the engine reaches a magnitude balancing with a torque applied to the brake due to a running load.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 29, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroaki Kiyokami, Norihiro Yamamura
  • Patent number: 8938327
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a method for transitioning between regenerative braking and engine braking is described.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: January 20, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, Adam Nathan Banker, David Oshinsky
  • Publication number: 20150019057
    Abstract: A vehicle includes a power storage unit, a regenerative generator, and an electronic control unit. The regenerative generator is connected to the power storage unit and is configured to perform regenerative power generation. The electronic control unit is configured to perform regeneration amount enlargement control in which positions of stopping and deceleration of the vehicle by input of driver's operations are predicted or set based on route information, regenerative power generation by the regenerative generator is controlled, and a regeneration power amount charged into the power storage unit is enlarged.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventors: Keisuke MORISAKI, Kouji HOKOI
  • Publication number: 20140343772
    Abstract: An anti-blocking system for a vehicle having an electromotive vehicle drive unit includes one or more driving motors.
    Type: Application
    Filed: February 28, 2012
    Publication date: November 20, 2014
    Applicant: Audi AG
    Inventors: Sebastian Loos, Dirk Hirschmann, Bodo Kleickmann
  • Patent number: 8892290
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, negative torque of an electric machine is adjusted to mimic negative torque of an engine during engine braking so that the vehicle may transition from regenerative braking to engine braking in a seamless manner.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 18, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Gregory Michael Pietron
  • Publication number: 20140336893
    Abstract: A vehicle control device includes: an engine and a first motor generator from both of which a driving force for traveling is output to drive wheels; and an electricity storage device that storages electric power for driving the first motor generator. When a vehicle weight is in a reference state at a time of deceleration braking, the first motor generator is mainly caused, out of the first motor generator and the engine, to generate a braking force, and when the vehicle weight is greater than that in the reference state, the engine is mainly caused, out of the first motor generator and the engine, to generate the braking force. Thus, a sufficient braking force can be obtained while an input limit of the electricity storage device is prevented from being reached.
    Type: Application
    Filed: December 14, 2011
    Publication date: November 13, 2014
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Yuji Inoue, Shingo Eto, Yousuke Michikoshi, Akihiro Sato
  • Patent number: 8882634
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, external data are a basis for operating a driveline disconnect clutch. For example, a vehicle destination may be a basis for opening a driveline disconnect clutch and beginning to discharging an energy storage device so that fewer hydrocarbons may be consumed by the vehicle.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, David Oshinsky
  • Publication number: 20140323267
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, entry conditions for entering a driveline sailing mode are described. Driveline sailing mode may improve driveline torque response and vehicle drivability.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Seung-Hoon Lee
  • Publication number: 20140323266
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine may be operated at an idle speed while a driveline disconnect clutch separating the engine from a driveline is open in response to a reduction in driver demand torque. Engine torque may be applied to the driveline by simply closing the driveline disconnect clutch.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Seung-Hoon Lee
  • Patent number: 8862356
    Abstract: In a vehicle equipped for regenerative and non-regenerative braking, regenerative braking only is applied to predetermined wheels in response to braking demand when the driver attempts to slow the vehicle at a first rate (<D1 ft/sec2), no wheel locking on any braking wheel as indicated by an anti-lock braking system controller and speed exceeds a minimum threshold. If braking is applied in a turn, appropriate amount of non-drive wheel service/foundation brake torque to maintain vehicle stability is applied. The appropriate amount of foundation braking to be applied is determined by the amount of vehicle yaw, steering wheel input and vehicle speed by using a look-up table. As braking demand increases foundation/service braking is added, first to any wheels not providing for regenerative braking and later to wheels having regenerative braking.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: October 14, 2014
    Assignee: International Truck Intellectual Property Company, LLC
    Inventor: Stanton E. Miller
  • Publication number: 20140277873
    Abstract: A hybrid electric vehicle includes an engine and an electric machine for providing propulsion forces to wheels of the vehicle. In an electric-only propulsion mode, the engine is disabled and the electric machine acts as the power source for the wheels. In a hybrid propulsion mode, the engine is activated to act as an additional power source for the wheels. At least one controller along with a plurality of sensors and positional information devices activate an active safety control signal in response to objects surrounding the vehicle that pose a threat to a potential collision event. In response to the active safety control signal, the engine can be either automatically started or stopped to provide additional available power or a reduced available power, respectively.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Derek Hartl, Ming Lang Kuang, Bernard D. Nefcy
  • Publication number: 20140277984
    Abstract: A hybrid vehicle includes an internal combustion engine and an electric motor for powering two wheels. The wheels are separated by a common differential. A controller is provided to execute certain commands related to the braking of the vehicle. During braking of the two wheels, one wheel exceeds its slip limit, causing the wheel speed of that wheel to drop and pull-down as the wheel catches the ground. In response to the one wheel pulling-down, the controller commands a reduction of brake actuation force on the pulled-down wheel, and also commands a reduction of a rate of increase of the brake actuation force on the non-pulled-down wheel. Simultaneous pull-down or pull-up of the wheels is thereby inhibited as brake actuation forces on each wheel are continued to be controlled in response to the other wheel's activity.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Lawrence M. Rose, Jason Meyer, Kerem Bayar
  • Publication number: 20140277989
    Abstract: A system according to the principles of the present disclosure includes a cruise control module, an engine control module, and a brake control module. The cruise control module determines a cruise torque request based on at least one of a following distance of a vehicle and a rate at which the vehicle is approaching an object. The engine control module determines a negative torque capacity of a powertrain. The powertrain includes an engine and an electric motor. The brake control module applies a friction brake when the cruise torque request is less than the negative torque capacity of the powertrain.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: ERIC E. KRUEGER, Matthew J. Klemmer, Kiana Bassey, Christopher E. Whitney, Patrick J. O'Leary
  • Publication number: 20140249730
    Abstract: A process for controlling a vehicle start-stop operation having a hybrid drive with an internal-combustion engine and an electric motor, a service brake with an ABS and an electric parking brake, includes: determining, monitoring and analyzing performance parameters of the vehicle, the internal-combustion engine, the electric motor, the service brake and the parking brake; automatically releasing the parking brake in the case of a starting prompt because of determined performance parameters; driving the vehicle by the electric motor for the start; starting the engine by the electric motor if the engine is switched off; driving the vehicle by the electric motor and the engine; activating a generator operation of the electric motor in the case of a braking prompt because of determined performance parameters; activating the service brake; and automatically locking the electric parking brake when the vehicle is stopped after a previously definable deceleration time.
    Type: Application
    Filed: May 8, 2014
    Publication date: September 4, 2014
    Applicant: KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH
    Inventor: Eduard Hilberer
  • Publication number: 20140158448
    Abstract: A parallel regeneration brake torque modulation system for an electrified vehicle includes a brake pedal travel sensor adapted to transmit a brake pedal travel sensor signal upon travel of a vehicle brake pedal through at least a portion of a range of motion; and a regenerative braking system adapted to apply regeneration braking torque to a vehicle using the brake pedal travel sensor signal from the brake pedal travel sensor.
    Type: Application
    Filed: December 8, 2012
    Publication date: June 12, 2014
    Inventor: John Phillip McCormick
  • Patent number: 8740744
    Abstract: A system and method for controlling a hybrid vehicle having an engine, a battery powered traction motor, and an automatic step-ratio transmission selectively coupled in series by a clutch include engaging the clutch to couple the engine and the motor and controlling motor torque to provide braking torque through the transmission to substantially maintain a cruise control speed. In one embodiment, a hybrid electric vehicle includes a battery powered traction motor connected to a transmission, an engine selectively coupled in series with the motor by a clutch, and a controller communicating with the traction motor and the engine and configured to control the motor to provide braking torque when the clutch is engaged and engine braking torque is insufficient to maintain cruise control speed of the vehicle as the vehicle travels downhill.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Peter John Grutter, Roger Lyle Huffmaster
  • Patent number: 8738260
    Abstract: A brake control system includes: a friction brake unit for generating a friction braking force; a regenerative brake unit for generating a regenerative braking force; and a control unit for controlling the regenerative and friction brake units based on a regenerative target value and a friction target value defined based on a target deceleration, and for controlling a braking force by selecting one of a plurality of control modes including both a regeneration permission mode in which a total braking force is generated by the regenerative and friction braking forces, and a regeneration prohibition mode in which the target deceleration is generated by the friction braking force. In the permission mode, the control unit generates the total force by providing a delay, while in the prohibition mode, the control unit provides a delay smaller than the above delay to the friction braking force or does not provide a delay.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Miyazaki, Kazunori Nimura
  • Patent number: 8731795
    Abstract: A vehicle braking control system includes a vehicle brake associated with a wheel on the vehicle. A pedal activated by an operator of the vehicle controls application of the brake. An electronic control unit determines a grade mode of the vehicle and controls application of the brake independent of the operator activating the pedal while in an automatic braking mode. The electronic control unit sends a control signal to apply the brake in a manner to reduce brake fade while controlling a speed of the vehicle when the electronic control unit is in the automatic braking mode and the vehicle is in a downhill grade mode.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Bendix Commercial Vehicle Systems LLC
    Inventors: Timothy J. Frashure, Richard J. Conklin
  • Publication number: 20140125260
    Abstract: A vehicle includes an engine, an EHC (electrical heated catalyst), a first MG (motor generator) generating a counter electromotive force at the time of vehicle collision, a battery, a PCU (power control unit) having a converter and an inverter performing power conversion between the battery and the first MG, and an ECU. The PCU is connected to the battery through an SMR (system main relay). The EHC is connected between the converter and the inverter through EHC relay. The ECU determines whether or not vehicle collision has occurred. When the vehicle collision has occurred, the ECU opens the SMR to electrically separate the battery and the PCU and closes the EHC relay to electrically connect the EHC and the first MG, so that the counter electromotive force generated in the first MG at the time of vehicle collision is consumed at the EHC.
    Type: Application
    Filed: August 8, 2011
    Publication date: May 8, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Keita Hashimoto
  • Patent number: 8706379
    Abstract: A technique for controlling coasting of a hybrid vehicle equipped with an Automated Manual Transmission (AMT) is disclosed herein. First, the amount of regenerative braking is varied based on the degree of manipulation of an accelerator pedal within the predetermined control range of a total degree of manipulation of the accelerator pedal from when the accelerator pedal is not being manipulated. The amount of regenerative braking decreases as the degree of manipulation of the accelerator pedal increases. The control range is used to perform control in such a way as to vary the amount of regenerative braking according to the amount of manipulation of the accelerator pedal. Further, the control range is set to within a range of initial 5 to 20% of the total degree of manipulation of the accelerator pedal.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: April 22, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Sang Pil Jang
  • Patent number: 8700284
    Abstract: A towed vehicle is towed by a towing vehicle. The towed vehicle includes a motor/generator for both regenerative braking and for powering wheels. A tow member connects the towed vehicle to the towed vehicle. A sensor measures or infers the tension and compression in the tow member. A computer communicates with the sensor and with the motor/generator. The computer commands the motor/generator to either utilize regenerative braking or provide assistance in propulsion of the towed vehicle based upon the tension and compression forces in the tow member.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 15, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Scott Wojtkowicz, Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Publication number: 20140100751
    Abstract: A braking system for hybrid vehicle may include a brake pedal, a pedal stroke sensor detecting stroke of the brake pedal and outputting corresponding signal, a brake control unit receiving the signal of the pedal stroke sensor, a driving wheel caliper braking a driving wheel according to control of the brake control unit, a regenerative braking unit including a motor/generator which generates electric energy according to control of the brake control unit in braking of the driving wheel, a master cylinder connected with the brake pedal and operated by the brake pedal, and a driven wheel caliper braking a driven wheel according to operation of the master cylinder.
    Type: Application
    Filed: December 12, 2012
    Publication date: April 10, 2014
    Applicants: Research & Business Foundation, Sungkyunkwan University, Hyundai Motor Company
    Inventors: Byoung Soo Yoo, Hyun-Soo Kim, Ji-Weon Ko
  • Patent number: 8694190
    Abstract: A regeneration control device of a hybrid vehicle detects brake fluid pressure for detecting the amount of engagement of the brakes of the hybrid vehicle, and performs a first regeneration control in a closed state of the accelerator and the brake pedal not being depressed, a second regeneration control in the closed state of the accelerator and the brake pedal being depressed, and a third regeneration control when the accelerator pedal is in the closed state and the brake fluid pressure exceeds a predetermined value, wherein X(Nm/s) is set as the rate of increase of regenerative torque in the first regeneration control, Y(Nm/s) is set as the rate of increase of regenerative torque in the second regeneration control, and Z(Nm/s) is set as the rate of increase of regenerative torque in the third regeneration control, then X<y<Z is satisfied.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 8, 2014
    Assignee: Hino Motors, Ltd.
    Inventors: Akira Sawayama, Masahiro Suzuki
  • Patent number: 8670888
    Abstract: A system includes a computing device with memory configured to store instructions and a processor to execute the instructions for operations that include receiving information representative of an amount of energy stored over a first period of time in an energy storage device of a vehicle that includes a first propulsion system. Operations include receiving information representative of a performance measure of the vehicle for a second period of time, shorter than the first period of time, and, determining an assistance adjustment from an estimated value of stored energy from the information representative of the amount of energy stored over the first period of time. Operations include determining a level of assistance for a second propulsion system included in the vehicle from the received information representative of the performance measure, and, adjusting the level of assistance using the assistance adjustment determined from the estimated value of the stored energy.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 11, 2014
    Assignee: XL Hybrids
    Inventor: Neal Ennis Brenner
  • Publication number: 20140066251
    Abstract: A gear shift control system for vehicles is provided which mathematically calculates a rate of deceleration of the vehicle equipped an automatic transmission upon start of deceleration of the vehicle and inhibits the automatic transmission from upshifting or changes a permissible gear shift range of the automatic transmission as a function of the rate of deceleration of the vehicle, thereby ensuring a desired degree of braking force including an engine braking force while the vehicle is decelerating.
    Type: Application
    Filed: August 8, 2013
    Publication date: March 6, 2014
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Shuhei KAWAMOTO, Satohiro YOSHIDA
  • Publication number: 20140058640
    Abstract: A control unit (17) includes a regenerative coordination control unit (17D) and a vehicle speed calculation unit (17E). The regenerative coordination control unit (17D) performs a regeneration cooperative control to distribute the hydraulic braking force and the regenerative braking force. The vehicle speed calculation unit (17E) calculates a vehicle speed. The control unit (17) calculates a basic target driving force based on: an amount of accelerator operation detected by an accelerator operation amount detecting unit (32), and the vehicle speed calculated by the vehicle speed calculation unit (17E), and adds a value corresponding to the regenerative braking force distributed by the regenerative coordination control unit (17D) to the basic target driving force, thus obtaining a target driving force to be generated by motors (4 and 5). This reduces a creep driving force during vehicle running corresponding to a brake operation of a driver to reduce power consumption.
    Type: Application
    Filed: February 4, 2011
    Publication date: February 27, 2014
    Inventors: Masakazu Saito, Yoshiki Ito, Masaaki Tagawa, Hitoshi Ohkuma
  • Publication number: 20140048345
    Abstract: A vehicle (100) comprising an engine (103) arranged to apply a first drive torque to a first wheel (101) for moving the vehicle (100); and an electric motor (40) arranged to apply a second drive torque to a second wheel (101) for moving the vehicle (100) when in a drive mode and to generate a current when placed in a braking mode of operation and the electric motor (40) is being driven by the second wheel (101), wherein the electric motor (40) is arranged to operate in the braking mode when the engine (103) is applying a drive torque to the first wheel (101).
    Type: Application
    Filed: December 6, 2011
    Publication date: February 20, 2014
    Applicant: PROTEAN ELECTRIC
    Inventor: Neil Trueman
  • Patent number: 8649952
    Abstract: A method for controlling a backing vehicle includes if a back-up sensor indicates that an obstacle is present behind the vehicle and a gear selector is moved to a reverse position, delaying reverse gear engagement and producing a warning signal, and producing a transmission tie-up if brakes are applied insufficiently to stop the vehicle.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: February 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Steven G. Thomas
  • Patent number: 8634987
    Abstract: A creep travel capability of an electric vehicle is secured when an abnormality occurs in a brake sensor. When an accelerator operation amount reaches 0% in a low vehicle speed region, a target creep torque is set, whereupon a motor-generator is controlled toward the target creep torque. The target creep torque is reduced as a brake pedal is depressed in order to suppress heat generation and the like in the motor-generator during vehicle braking. Hence, in an electric vehicle in which the target creep torque is varied in accordance with the brake operation amount, when an abnormality occurs (step S11) in a brake sensor for detecting a brake operation amount, a preset prescribed creep torque is employed as the target creep torque regardless of the brake operation amount (step S15). The prescribed creep torque is set at a required magnitude for securing the creep travel capability.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: January 21, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Itaru Seta, Yosuke Ohtomo
  • Publication number: 20140018986
    Abstract: A braking system and method for a motor vehicle including a hybrid or electric traction system, including a decoupled brake pedal module, a hydraulic braking module, and an electric braking module used for recovery of electrical energy during braking carried out by the electric traction system, the decoupled braking module including a brake pedal and a mechanism controlling the hydraulic braking system and the electric braking module. The system measures at least one parameter associated with the pedal, and limits the recovery of electrical energy by the electric braking module.
    Type: Application
    Filed: February 14, 2012
    Publication date: January 16, 2014
    Applicant: RENAULT s.a.s
    Inventor: Hamid Azzi
  • Patent number: 8630759
    Abstract: A method is provided for controlling regenerative braking in a hybrid electric vehicle. The vehicle includes an energy-storage device, a motor/generator configured to retard the vehicle via regenerative braking, and a controller arranged to control regenerative braking. The method includes receiving a regenerative braking request, and detecting whether the energy-storage device is between first and second predetermined states of charge. The method additionally includes retarding the vehicle via the motor/generator and directing electrical energy from regenerative braking to an energy dissipating device, if the energy-storage device is at or above the first predetermined state of charge, or at or below the second predetermined state of charge. Furthermore, the method includes retarding the vehicle via the motor/generator and directing electrical energy from regenerative braking to the energy-storage device, if the energy-storage device is between the first and second predetermined states of charge.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Paul A. Bauerle
  • Patent number: 8602142
    Abstract: A method, apparatus, and system are disclosed for hybrid power system braking. In one embodiment, a vehicle weight input is received by a brake controller. In response to receiving the vehicle weight input, a maximum negative braking torque is determined. Regulation of negative braking torque according to vehicle weight is accomplished by one or both of a regenerative braking device and mechanical braking device.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 10, 2013
    Assignee: Cummins Inc.
    Inventors: Martin Books, Praveen Muralidhar