Difference In Molecular Velocity, Density, Or Momentum Of Gases Used Patents (Class 95/31)
  • Publication number: 20150114222
    Abstract: A microfluidic device including: a substrate having a flow channel and an outlet port connected to the flow channel and configured to discharge liquid; and an inlet portion being present on a surface of the substrate and configured to allow injection of liquid into the flow channel, wherein the inlet portion includes a first tube and a second tube being present in an interior of the first tube and having a height smaller than that of the first tube, the outlet port includes a first outlet port and a second outlet port, the flow channel includes a first flow channel and a second flow channel, the second flow channel connects the second outlet port and a space between the first tube and the second tube, and the first flow channel and the second flow channel are not connected.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventor: Yoichi Murakami
  • Publication number: 20150059571
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 5, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20130255486
    Abstract: A separation system including a source of a gaseous mixture, the gaseous mixture comprising at least a first constituent and a second constituent, and a separation unit in communication with the source to receive the gaseous mixture and at least partially separate the first constituent from the second constituent, wherein the separation unit comprises at least one of a vortex separator and a pressure vessel.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 3, 2013
    Applicant: The Boeing Company
    Inventors: John C. Hall, D. Anthony Galasso, Jon A. Magnuson
  • Publication number: 20130174731
    Abstract: A method for separation of isotopes includes vaporizing a sample having two or more isotopes of the same element. A stream of atoms is generated from the vaporized sample. One or more light waves are applied to the stream. The one or more light waves are tuned to convert one or more specific isotopes in the flowing stream to a set of one or more magnetic states. A magnetic field is applied to the stream, deflecting atoms in the stream based on their magnetic states. Isotopes are collected based on their deflections (or lack of deflection).
    Type: Application
    Filed: November 30, 2012
    Publication date: July 11, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventor: Board of Regents, The University of Texas System
  • Publication number: 20130081793
    Abstract: A heat separator for generating a warmer gas and a cooler gas from a gas in equilibrium, comprising two filtering meshes separated by a channel.
    Type: Application
    Filed: September 3, 2012
    Publication date: April 4, 2013
    Inventor: Dan MEKLER
  • Patent number: 8361194
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 29, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 8202348
    Abstract: A method of dissociating or decomposing the elemental components of a medium within a treatment zone via application of radio frequency energy. The selected medium may be communicated to a treatment zone, such as a chamber, wherein the chamber walls and/or a plurality of antenna disposed within the chamber or treatment zone emit radio frequency energy capable of separating the elemental components of the selected medium. The plurality of antenna may further comprise a chemical coating disposed thereon to facilitate the medium separation process. Denser elemental components may be removed from a bottom portion of the chamber or treatment zone, while lighter elemental components may be removed from an upper portion of the chamber or treatment zone. A vacuum pump or any other means known within the art may be used to remove the elemental components from the chamber or treatment zone.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 19, 2012
    Inventors: Lawrence Curtin, Zechariah K. Curtin
  • Publication number: 20120103189
    Abstract: The invention relates to a device for separating a flowing medium mixture into at least two fractions with differing mass density. The device comprises an inlet for the medium mixture to be separated, which connects to first separating means for separating the flowing mixture in at least a first and a second fraction, and that connect to first and second outlet means for discharging the first and second fractions. The device further comprises a feedback loop comprising second separating means between the second outlet means and the inlet means of the first separating means. The invention also relates to a method for separating a flowing medium mixture into at least two fractions with differing mass density, using the claimed device. The device and method allow to obtain a more selective separation, particularly in purifying natural gas.
    Type: Application
    Filed: March 24, 2010
    Publication date: May 3, 2012
    Applicant: ROMICO HOLD A.V.V.
    Inventors: Reinoud Hoijtink, Melissa Hoijtink, Josef Johannes Hubertus Brouwers
  • Patent number: 8118170
    Abstract: Particulates called nanoparticles (principally having a diameter of 10 nm or less) are reliably and easily according to size with high throughput. An impactor includes a particulate size classifying chamber provided with an exhaust port for particulates, a nozzle ejecting to the inside of the particulate size classifying chamber a carrier gas containing particulates to be classified, and a trapping plate as particulate trapping unit provided in the particulate size classifying chamber and selectively trapping particulates ejected from the nozzle.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: February 21, 2012
    Assignee: Fujitsu Limited
    Inventor: Shintaro Sato
  • Patent number: 8104362
    Abstract: An inline virtual impactor comprising an outer housing having a housing inlet, a housing inner surface, a major flow outlet and a minor flow outlet; a flow accelerator member disposed in the upstream portion of the outer housing; and a flow stabilizer member disposed within the outer housing downstream of the flow accelerator member, wherein the disposition of the flow accelerator creates an annular flow passage between the flow accelerator and the outer housing, and wherein a flow divider that is at least partially downstream of the flow stabilizer member effects splitting of the flow stream entering the housing into major and minor flows. The minor flow comprises primarily particles having a size greater than a cutpoint size and the major flow comprises primarily particles smaller than the cutpoint size. The inline virtual impactor may further comprise an aspiration section located upstream of the flow accelerator member.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: January 31, 2012
    Assignee: Texas A&M University System
    Inventors: Andrew R. McFarland, Satyanarayanan Seshadri
  • Publication number: 20110296985
    Abstract: The present invention is directed to a method and a system for separating gas components of a gas containing a plurality of gaseous components. A compressible feed stream containing at least one target compressible component and at least one non-target compressible component is mixed in a substantially co-current flow with an incompressible fluid stream comprising an incompressible fluid in which the target component(s) is/are capable of being preferentially absorbed. Rotational velocity is imparted to the mixed streams, separating an incompressible fluid in which at least a portion of the target component is absorbed from a compressible product stream containing the non-target compressible component(s). The compressible feed stream may be provided at a stream velocity having a Mach number of at least 0.1.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 8, 2011
    Applicant: SHELL OIL COMPANY
    Inventors: Frederik Arnold BUHRMAN, Jingyu CUI, Mahendra Ladharam JOSHI, Stanley Nemec MILAM, Scott Lee WELLINGTON
  • Patent number: 7931734
    Abstract: Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 26, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the Desert Research Institute
    Inventors: Hans Moosmüller, Rajan K. Chakrabarty, W. Patrick Arnott
  • Patent number: 7892434
    Abstract: Improved systems and methods are provided herein for passively filtering out droplets of different size such as satellite droplets from the generation of primary droplets and use these satellite droplets as the source for monodispersed production of submicron emulsions. The systems and methods described use active flow control to sort droplets of different size into desired collecting zones and use conventional shearing principles, and, as a result, provide 100% filtration of satellite droplets regardless of size differences.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 22, 2011
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Yung-Cheih Tan
  • Publication number: 20100077919
    Abstract: An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: The Regents of the University of California
    Inventor: Dipen N. Sinha
  • Publication number: 20100037770
    Abstract: Various embodiments of the present disclosure provide an inertial separation device, system, and method. The inertial separation device includes an inlet nozzle coupled to an expansion chamber. A sample outlet and an outlet port are coupled to the expansion chamber. In operation, a fluid sample passes though the inlet nozzle and is expanded in the expansion chamber such that the sample is separated into at least two fractions having different masses, a selected mass fraction passing through the sample outlet and a remaining portion of the sample passing out of the outlet port. A system including the inertial separation device includes a conduit coupled to the sample outlet nozzle and a detector coupled the conduit. The inlet nozzle may be, for example, coupled to an emissions source.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 18, 2010
    Inventors: Tom A. Baldwin, Dale Lundgren
  • Publication number: 20090317314
    Abstract: A particle separator and method for removing particles from an exhaust gas stream of an internal combustion engine. Differing flow regions having different flow conditions are formed in the particle separator. The differing flow regions are configured such that essentially particles having different, defined sizes and/or masses are adapted to be separated out of the exhaust gas stream in the differing flow regions. The exhaust gas stream is adapted to flow through at least portions of the particle separator.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventor: Andreas Doring
  • Patent number: 7632326
    Abstract: A module mountable in the crankcase of a vehicle for removing gases therefrom including a housing having an opening communicable with the crankcase, a set of bearings disposed in such housing, a hollow shaft journaled in such bearing having first and second partitions providing first and second axially disposed chambers, cooperating with said housing to provide first and second annular chamber, such shaft having a passageway intercommunicating the first axial chamber and the first annular chamber, a passageway intercommunicating the first axial chamber and the second annular chamber and a passageway intercommunicating the second axial chamber and the second annular chamber, a spiral, centrifugal separator mounted on such shaft in the first annular chamber, and a pillar mounted on the shaft in the second annular chamber and means connectable to motive means for rotating such shaft.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: December 15, 2009
    Assignee: Audi AG
    Inventor: Xaver Stemmer
  • Patent number: 7628836
    Abstract: A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: December 8, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Michael R. Barone, Karen Murdoch, Timothy D. Scull, James H. Fort
  • Patent number: 7591882
    Abstract: The invention relates to a method for separating gas mixtures by means of an inventive gas centrifuge during which a compressible working fluid from an axial central supply tube (1) is introduced into the enlarging casing space (2) whereby passing through the flow channels (6) of the compression area (A) of a double-walled centrifuge rotor (3) and, in the axially distant area (B) inside the double tube, is guided in flow channels (6) having a constant flow cross-section (4) when in the centrifuged state. The flow of gas is separated into a specifically heavier and a specifically lighter gas fraction at a separating barrier (8) that is dependent on the individual gas volume portion. Inside the flow channels (6), the separated gas fractions are forcibly guided, slowed down and diverted in a separate manner with decreasing axial distance. The acceleration of the gas molecules in compression area (A) and the slowing down of the gas fractions in expansion area (C) ensue in a manner that is proportional to mass.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: September 22, 2009
    Assignee: Rerum Cognito Forschungszentrum GmbH
    Inventor: Wolfgang Harazim
  • Publication number: 20090090240
    Abstract: A bioreactor and process is described which offers a transition or continuum between one or more of (a) from biotrickling filter conditions to biofilter conditions, (b) changing media characteristics, c) liquid or nutrient recirculation rates or frequency, (d) pH, (e) gas velocity, (f) retention time along the gas flow passage or (g) cross-sectional area. For example, media may be arranged in sections of a rectangle, with gas flow in a horizontal direction sequentially through the sections, and liquid flow in a vertical direction from top to bottom in one or more sections. Zonal control of process conditions may be provided as the gas passes from inlet to outlet and liquid is introduced at the top of one or more zones and flows down by gravity.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 9, 2009
    Inventor: Hidayat Husain
  • Publication number: 20090044699
    Abstract: Embodiments of the invention relate to methods and apparatuses for forming films using CVD. One or more method and apparatus embodiments include preventing the formation of bonds and/or breaking bonds that permit polymers to form in an exhaust line of a CVD apparatus.
    Type: Application
    Filed: October 2, 2008
    Publication date: February 19, 2009
    Applicant: Applied Materials, Inc.
    Inventor: David K. Carlson
  • Publication number: 20090038474
    Abstract: A mechanism configured to interact with air, which has been sucked through a device that imparts turbulence to the air, causes a redistribution of components (e.g., oxygen and nitrogen) in the air so that when the air arrives at a location where the oxygen is to be consumed there is an enriched supply of oxygen available. The effects of a first stage of turbulence of the induced air is reduced, resulting in a higher density supply to the atomization point and to the combustion chamber, in the case of an internal combustion engine.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 12, 2009
    Inventors: Mohammed S. Moktader, Zahir Adil
  • Publication number: 20090013871
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Inventors: Arthur DARDE, Bao Ha, Jean-Pierre Tranier
  • Publication number: 20080110339
    Abstract: An impact filter suitable for a kitchen exhaust hood is provided with a grease trap to capture grease particles and channel the particles away. The trap can be of different configurations. The filter can be used in various system layouts.
    Type: Application
    Filed: November 8, 2007
    Publication date: May 15, 2008
    Inventors: Kui-Chiu Kwok, Russell Robison
  • Publication number: 20040237777
    Abstract: The present invention discloses a method for the removal of a number of molecular contaminants from surfaces within a device. A purge gas containing oxygen and/or water is introduced into the interior of the device, contacting at least a portion of the interior surfaces. A contaminated purge gas is produced by transferring a portion of the contamination from the interior surfaces into the purge gas. The contaminated purge gas is removed from the device and the process is continued until the contaminant concentration in the contaminated purge gas is below a predetermined level.
    Type: Application
    Filed: October 10, 2003
    Publication date: December 2, 2004
    Inventors: Daniel Alvarez, Jeffrey J. Spiegelman
  • Publication number: 20040232052
    Abstract: Airborne particles are impacted on a collection surface, analyzed, and then the collection surface is regenerated. Thus, the same collection surface can be used in numerous cycles. The analysis can be focused on one or more properties of interest, such as the concentration of airborne biologicals. Sensors based on regenerative collection surfaces may be incorporated in many networks for applications such as building automation.
    Type: Application
    Filed: March 1, 2004
    Publication date: November 25, 2004
    Inventors: Charles John Call, Ezra Merrill, Robert Beckius
  • Patent number: 6746503
    Abstract: A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 8, 2004
    Assignee: The Regents of the University of California
    Inventors: William J. Benett, Robin Miles, Leslie M. Jones, II, Cheryl Stockton
  • Patent number: 6702873
    Abstract: An inertial inlet particle separator system (14) for a vehicle engine (12) is provided. The system (14) includes a particle sensor (60) that generates a contamination signal. An inertial inlet particle separator (56) is also included in the system (14) and has a fluid parameter adjusting system (58) mechanically coupled within the inertial inlet particle separator (56). A controller (62) is electrically coupled to the particle sensor (60) and the clean fluid parameter adjusting system (58). The controller (62) adjusting a fluid parameter of the inertial inlet particle separator (56) in response to the contamination signal. A method of performing the same is also provided.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: March 9, 2004
    Assignee: The Boeing Company
    Inventor: Peter A. Hartman
  • Patent number: 5735937
    Abstract: A gas contaminant separator includes a pressure tube and a concentric and axially aligned down pipe mounted within the pressure tube. The pressure tube and down pipe define an annular space having a helical rib extending therein. A plurality of magnets are mounted to the down pipe above the helical rib adjacent a perforated plate. A spiral induction plate is mounted within the down pipe for imparting rotation on a gas stream after the gas stream moves through the magnetic field created by the magnets, and through the perforated plate. A gas inlet admits gas into the annular space, and a gas outlet removes gas from the down pipe after it has passed through the annular space, across the magnetic field, through the perforated plate, and through the spiral induction plate mounted in the down pipe.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: April 7, 1998
    Inventor: Alan W. Dingfelder
  • Patent number: 5622538
    Abstract: A source capture system for capturing contaminated air from an industrial process includes structure both for continuously capturing a contaminated air volume emitted during operation of the industrial process and for mixing that contaminated air volume with an ambient air volume to produce a mixed air volume which is then transferred to an air clean apparatus or the like. The source capture system recognizes that air volumes will exhibit different characteristics traveling through an air treatment system, and that certain of those characteristics such as cloud-like formation and contaminated air volumes having significant gaseous phase vapor components are undesirable and operate to decrease the overall effectiveness of the air treatment system, regardless of what type of technology is used for the air cleaning apparatus.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: April 22, 1997
    Assignee: Helical Dynamics, Inc.
    Inventor: Wolodymyr Diachuk
  • Patent number: 5618323
    Abstract: An air intake system for a cab and engine of a vehicle is shown and described. In a preferred embodiment, dry, ambient air is provided to the cab and engine through a duct that is mounted to an inner surface of a vehicle hood such that the hood forms a top surface of the duct. The duct is relatively narrow across the width of the hood and flares into an air chamber on either side of the hood. An air inlet opening is provided on both sides of the hood such that outside air is drawn into the air chambers. The velocity of the air drops as it passes into and through the air chambers, causing the moisture in the air to separate and drain from the air chambers through an evacuator valve provided in the bottom surface of each chamber. Two openings are provided in the bottom surface of the duct. One opening sealingly engages an opening in the engine air cleaner and the second opening sealingly engages a cab air intake duct, when the hood is in a closed position.
    Type: Grant
    Filed: August 28, 1995
    Date of Patent: April 8, 1997
    Assignee: PACCAR Inc
    Inventors: Kenneth M. Shearn, Gerald J. Angelo
  • Patent number: 5613990
    Abstract: An air cleaning system for treating contaminated air from a mechanical industrial process containing a heterogenous multi-component mixed density fluid (e.g., mist, vapor and/or smoke) that addresses the cloud-like behavior of this contaminated air. The air cleaning system continuously captures a contaminated air volume emitted during operation of the mechanical industrial process and mixes that contaminated air volume with an ambient air volume in order to produce a mixed air volume having certain characteristic temperatures and air velocities. The characteristics of the mixed air volume are controlled such that the mixed air volume does not exhibit cloud-like behavior when transferred via a conduit structure to an air cleaning apparatus or the like.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: March 25, 1997
    Assignee: Helical Dynamics, Inc.
    Inventor: Wolodymyr Diachuk
  • Patent number: 5395425
    Abstract: Membranes having a multiplicity of openings therethrough which are sized and shaped to utilize the random motion of molecules of gas to produce gas flow through the membrane predominantly in one direction. Such membranes can be used in power systems, gas separation systems and other systems which utilize fluid flow.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: March 7, 1995
    Inventor: Melvin H. Brown
  • Patent number: 5316568
    Abstract: A membrane having a multiplicity of openings therethrough which are sized and shaped to utilize the random motion of molecules of gas to produce gas flow through the membrane predominantly in one direction. Such a membrane can be used in power systems, gas separation systems and other systems which utilize fluid flow.
    Type: Grant
    Filed: December 15, 1992
    Date of Patent: May 31, 1994
    Inventor: Melvin H. Brown