Heating Or Cooling Patents (Class 95/60)
  • Patent number: 9108139
    Abstract: The instant disclosure relates to a granular bed filtration system with gas entrained recycling for thermal power plants to filter dust from the exhaust gas. The granular bed filtration system comprises a flow channel, a gas intake, a gas exhaust portion, a granular sieving unit, a vacuum, a cyclone separator and a pneumatic transporting device. The flow channels guide filtering media to filter the inlet gas, and then the filtered gas is exhausted through the gas exhaust outside of the granular bed filtration system. The granular sieving unit separates the filtering media and dust. The vacuum, pneumatic transporting device and cyclone separator repeatedly deliver the filtering media by gas-entrainment recycle.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 18, 2015
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Shu-San Hsiau, Bo-Jun Wang, Chun-Chung Liao, Yau-Pin Chyou
  • Publication number: 20140202329
    Abstract: A process of enhancing fly ash collection without adding SO3 to a flue gas can include providing a flue gas that includes fly ash and combustion gases from a coal fired boiler; injecting into the flue gas a particulate resistivity aid; and then collecting the fly ash and particulate resistivity aid with a cold side electrostatic precipitator (ESP).
    Type: Application
    Filed: July 18, 2013
    Publication date: July 24, 2014
    Applicant: Novinda Corporation
    Inventor: James Robert Butz
  • Patent number: 8491703
    Abstract: A supply air device including supply air nozzles, through which incoming air is led into a mixing chamber and further into a room so that the supply air device induces a secondary air flow from the room. An electric particle filter and/or a cell gas filter, through which the circulating or secondary air flow is led.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 23, 2013
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Seppo Enbom, Matti Lehtimäki
  • Patent number: 8316852
    Abstract: Device for extracting particles from exhaled breath, comprising a cooling system (16) for creating droplets by condensation of the water vapor contained in the exhaled breath; a droplet recovery unit (7) provided with a side wall (2) having a grid form and converging towards an outlet opening (9), allowing the droplets attracted towards said side wall (2) to flow along the latter towards the outlet opening (9); and a discharge electrode (1) mounted inside the droplet recovery unit (7), said side wall (2) of said droplet recovery unit (7) defining a counter electrode to said discharge electrode (1) in order to attract droplet-collecting particles carried by exhaled breath towards said side wall (2).
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: November 27, 2012
    Assignees: Commissariat a l'Energie Atomique, CNRS
    Inventors: Patrick Pouteau, Jean Luc Achard
  • Publication number: 20120192713
    Abstract: An electrostatic precipitator collector plate assembly including at least one electrically conductive sheet adapted to be electrically grounded; a rib or baffle in physical and electrical contact with the at least one conductive sheet; and a hollow structure physically associated with the rib or baffle adapted to contain a cooling liquid.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventor: Bruce Edward Scherer
  • Patent number: 8206494
    Abstract: The invention concerns a device for air/water extraction by semi-humid electrostatic collection, comprising a chamber (7) containing a discharge electrode (1) for generating an ion flow from an ionized gas accumulation surrounding the discharge electrode (1) and a counter-electrode (2), an inlet (3) for mixing air and aerosol to be extracted which contains liquid or solid particles, a steam supply tube (8) and an outlet (4) for the cleansed air. The invention is characterized in that the device enables steam to be introduce the steam supply tube (8) in the gap between the discharge electrode (1) and the counter-electrode (2) so as to form a steam sheath (10) enclosing the discharge electrode over its entire length, such that the treated air is not steam-saturated.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: June 26, 2012
    Assignees: CNRS, Commissariat a l'Energie Atomique
    Inventors: Ernest Galbrun, Jean Luc Achard, Yves Fouillet, Raymond Charles
  • Patent number: 8039765
    Abstract: In a leadthrough for an electrical high voltage conductor through a wall which separates a process area from an ambient area, comprising a body of a dielectric high voltage resistant material, two axially adjacent geometric base structures are provided, a cylinder and a truncated cone having a smaller diameter end adjacent the cylinder so that the cylinder has a radial annular surface area adjacent the truncated cone, and the cylinder includes axially extending gas supply bores arranged uniformly distributed over the circumference of the cylinder and having exit openings at the radial annular face of the cylinder such that gas supplied to the gas supply bores at the ambient area end of the cylinder is discharged from the gas supply bores onto the outer surface of the truncated cone to form a gas envelope around the truncated cone.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: October 18, 2011
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Andrei Bologa, Thomas Wascher
  • Patent number: 7828876
    Abstract: The present invention provides systems and methods for organic particulate filtration. An organic particulate filtration system is implemented within a fossil fuel power plant combustion system. The filtration system comprises a gas flow, in which gas are entrained particulates. The filtration system has a collection hopper located proximate a precipitator collection area. Within the collection hopper, a particulate baffle is provided in a downward-angled orientation. The particulate baffle is enabled to trap particulate, such as organic particulate, in the collection hopper, thereby preventing particulate re-entrainment in the gas flow.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: November 9, 2010
    Assignee: Southern Company
    Inventor: Gerry E. Klemm
  • Publication number: 20100116126
    Abstract: A system is provided that prevents inhibition of adsorption of Hg and other heavy metals by activated carbon or other heavy metal adsorbent due to prior adsorption of sulfur trioxide (SO3) in an exhaust gas containing SO3. As it has been found that while SO3 is adsorbed, the adsorption of SO3 precedes the adsorption of Hg and other heavy metals onto activated carbon, a basic substance injection system is disposed along an exhaust gas flow channel at an upstream side of an activated carbon injection system, thereby attaining effective removal of Hg and other heavy metals from the exhaust gas by adsorption thereof onto surface pores of the activated carbon. The SO3 concentration after removal by basic substance conversion is computed from the SO3 concentration before removal, and the activated carbon injection rate can be controlled based on the concentration after removal.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 13, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Jun Shimamura, Takanori Nakamoto, Toshio Katsube, Hirofumi Kikkawa, Hiroyuki Nosaka, Takayuki Saitou, Yoshinori Taguchi, Hiroshi Ishizaka
  • Patent number: 7708814
    Abstract: Carbon dioxide contained within exhaust gas is combined with bivalent metal ions such as calcium ions or the like in concentrated salt water to form precipitated calcium carbonate and then can be expelled out. Such an environmental friendly design is realized by a bottle upside down device with a bottle neck exit on a bottom. A piston inside the device can be elevated to a top portion to produce a near vacuum air pressure inside the device. All the brine, exhaust gas, and oxygen, ozone drawn together into the device can be accelerated to form, at least, precipitated calcium carbonate to reduce carbon dioxide contained within the exhaust gas. Chemical reaction is accelerated by a high voltage discharger below the piston and by flashing a portion of water to atomize the brine. A heater can heat up the near vacuum device to accelerate chemical reaction.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: May 4, 2010
    Inventor: Chia-Chang Liu
  • Publication number: 20100074817
    Abstract: The following devices are successively disposed in the following order from an upstream side to a downstream side in an exhaust gas duct of a combustion apparatus: an air preheater, preheating combustion air for use in an exhaust gas treating apparatus; a heat recovery unit, recovering exhaust gas heat at an exit of the air preheater; a precipitator, collecting soot/dust contained in an exhaust gas at an exit of the heat recovery unit; a wet flue gas desulfurizer, removing sulfur oxides contained in the exhaust gas at the exit of the precipitator; and a reheater, heating the exhaust gas at the exit of the wet flue gas desulfurizer. Each of the heat recovery unit and the reheater has a heat exchanger tube, and a circulation line is disposed to connect the heat exchanger tubes. A sulfur trioxide (SO3) removing agent is supplied to the upstream side of the heat recovery unit, and the temperature of the exhaust gas at the exit of the heat recovery unit is adjusted to not more than a dew point of sulfur trioxide.
    Type: Application
    Filed: December 24, 2007
    Publication date: March 25, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Kazuki Kobayashi, Hirofumi Kikkawa, Hiroshi Ishizaka, Goki Sasaki, Hiroyuki Nosaka
  • Publication number: 20090056535
    Abstract: Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.
    Type: Application
    Filed: June 30, 2008
    Publication date: March 5, 2009
    Inventors: Hans Moosmuller, Rajan K. Chakrabarty, W. Patrick Arnott
  • Publication number: 20080307964
    Abstract: Contaminant laden gas streams from wood product dryer operations, and other sources, are purified. The gas stream first is saturated with moisture by contacting the gas stream with fine liquid droplets which entrain particulates. The gas stream then is subjected to a plurality of separate particulate and liquid droplet removal steps before a droplet-free gas stream having substantially reduced particulate contaminant levels is passed to a burner for removal of volatile organic compounds from the gas stream.
    Type: Application
    Filed: April 11, 2005
    Publication date: December 18, 2008
    Applicant: TURBOSONIC INC.
    Inventors: Edward F. Spink, Robert A. Allan
  • Patent number: 7431752
    Abstract: An air purifier includes an outer case having an air purifying cavity, an ionizer module, and an ozone reduction module. The ionizer module includes a power unit and an ionizing electrode. The ozone reduction module is electrically connected to the power unit for generating heat within the air purifying cavity, wherein when a temperature within the air purifying cavity reaches a preset temperature, a level of ozone generated by the ionizing electrode unit is substantially minimized and controlled for preventing excess generation of ozone.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: October 7, 2008
    Inventor: ZhuHuan Liang
  • Publication number: 20030143501
    Abstract: A method and apparatus for sulfur trioxide conditioning of flue gas, to assist in the removal of flyash from flue gas exhaust streams containing such flyash. More particularly, such a method and apparatus, which introduces an improvement in the transportation of dry sulfur and the melting and storage of resultant melted sulfur. The melted sulfur is subsequently burned and thereafter catalytically converted to sulfur trioxide for injection into a flue gas for such aforesaid assistance in the removal of flyash therefrom.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 31, 2003
    Inventor: James J. Ferrigan
  • Patent number: 6436170
    Abstract: An apparatus for removing particles from a gas in a high purity flowing gas system is provided which includes a flow tube inserted inline in the flowing gas system having an inlet and an outlet, a pressure sealed, electrically insulated feed-through integral to the flow tube, an emitter inserted through the feed-through into the flow tube to create a plasma in the gas to charge particles in the gas, and a collector surface in proximity to the emitter; whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: August 20, 2002
    Assignee: Air Products and Chemical, Inc.
    Inventors: Wayne Thomas McDermott, Richard Carl Ockovic
  • Patent number: 6074458
    Abstract: Apparatus and method for separating carbon particles from flyash includes one of increasing a relative humidity of the flyash or decreasing the relative humidity of the flyash to within an optimum humidity range, and introducing the flyash within the optimum humidity range into a triboelectric separator so as to triboelectrically charge the carbon particles and the flyash and so as to electrostatically separate the charged carbon particles from the charged flyash.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: June 13, 2000
    Assignee: Separation Technologies, Inc.
    Inventors: James D. Bittner, Thomas M. Dunn, Frank J. Hrach, Jr.
  • Patent number: 5980610
    Abstract: An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: November 9, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Hann-Sheng Huang, Anthony J. Gorski
  • Patent number: 5855652
    Abstract: Apparatus is disclosed for rapidly collecting aerosols containing solid particles and micro organisms, such as viruses and bacteria, from relatively large volumes of air and concentrating these particulates as samples in water. This apparatus operates under conditions conducive to preserving the integrity and viability of the collected micro organisms. Ambient air containing aerosols drawn into and through the collector's interior by an air mover, is mixed with very warm air saturated with moisture and then with cold air, to cause the resulting vapor mixture to become supersaturated. This supersaturated water vapor rapidly condenses onto the incoming aerosol particles to form droplets with particles at their centers. The airstream carrying these droplets enters a cloud of air ions produced by a corona generator or, alternately, by a radioactive source emitting alpha particles.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: January 5, 1999
    Assignee: Topaz 2000, Inc.
    Inventor: Robert Talley
  • Patent number: 5827352
    Abstract: A method for removing mercury from a gas stream. In the method, sorbent is injected into the gas stream. Water is dispersed into the gas stream to create a cooled gas stream. The cooled gas stream is allowed to dwell with the sorbent in a chamber to remove mercury from the cooled gas stream. The cooled gas stream is passed through an electrostatic precipitator located above the chamber which collects water and recycles the collected water back into the chamber for cooling the gas stream in the chamber. An apparatus for removing mercury from a gas stream is also provided.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: October 27, 1998
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ralph F. Altman, Ramsay Chang, Robert M. Henningsgaard, Ronald W. Elsner
  • Patent number: 5792238
    Abstract: An integrated flue gas treatment condensing heat exchanger having a particle charger located upstream of the second stage heat exchanger of the system for improved cleaning of flue gas and increased removal of fine particulate matter.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: August 11, 1998
    Assignee: The Babcock & Wilcox Company
    Inventors: Dennis W. Johnson, Robert B. Myers, Karl H. Schulze, Ralph T. Bailey
  • Patent number: 5690898
    Abstract: A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: November 25, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles M. Barnes, Carolyn Shapiro
  • Patent number: 5665142
    Abstract: A flue gas conditioning system and method generates and introduces sulfur trioxide into flue gas produced by a boiler to condition the flue gas before it passes through an electrostatic precipitator. Flue gas is withdrawn from the flue duct which couples the boiler to the electrostatic precipitator and cleaned to provide a source of sulfur dioxide. The withdrawn flue gas is passed through a heater and then into a catalytic converter which converts native SO.sub.2 in the flue gas into SO.sub.3 which is then introduced back into the flue duct to condition the flue gas. The SO.sub.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: September 9, 1997
    Assignee: Wilhelm Environmental Technologies, Inc.
    Inventor: Robert A. Wright
  • Patent number: 5562755
    Abstract: A process for after-purifying a kieserite mixture pre-concentrated electrostatically across a number of stages is characterized in that the outside air used in the after purification stage is adjusted by dehumidification in a conventional dehumidification plant to an absolute moisture of 4.5 g/m.sup.3, and the kieserite mixture to be separated by triboelectrically charging with said air at a temperature of below 40.degree. C.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: October 8, 1996
    Assignee: Kali und Salz Beteiligungs AG
    Inventors: G unter Fricke, Ingo Stahl, Peter-M. Beier
  • Patent number: 5470556
    Abstract: The invention is a method for reduction of sulfur trioxide in flue gases which includes (a) combusting air and petroleum coke in a combustion zone to produce a particulates, sulfur trioxide, and sulfur dioxide-containing combustion product gas; (b) passing the combustion product gas from step (a) to a dry electrostatic precipitator for removal of particulates and recovering the combustion product gas substantially free of particulates, or alternatively rearranging the steps so so that step "b" follows steps "c" and "d"; (c) admixing particulates with the combustion product gas from step (b), to produce a first mixture; (d) passing the first mixture from step (c) to an air preheater for cooling the first mixture and heating the air for combustion with the petroleum coke, wherein the sulfur trioxide in the first mixture condenses on the particulates, to produce a second mixture containing combustion product gas containing sulfur trioxide condensed on particulates and sulfur dioxide; (e) passing the second mixtu
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: November 28, 1995
    Assignee: Shell Oil Company
    Inventor: Norman C. Samish