Including Cleaning Or Regeneration Of Separating Means (e.g., Particulate Bed Filter, Deflector, Etc.) Patents (Class 95/68)
  • Patent number: 9470439
    Abstract: Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system, which includes an expansion component, an evaporator, a compressor and a condenser coupled in fluid communication. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant separator coupled in fluid communication with the refrigerant flow path. The separator includes a refrigerant cold filter and a thermoelectric array. At least a portion of refrigerant passing through the refrigerant flow path passes through the cold filter, and the thermoelectric array provides cooling to the cold filter to cool refrigerant passing through the filter. By cooling refrigerant passing through the filter, contaminants solidify from the refrigerant, and are deposited in the cold filter.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Evan G. Colgan, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9149758
    Abstract: Provided are a continuous oxygen adsorption and desorption device and an continuous oxygen adsorption and desorption method using the device, and more particularly, an continuous oxygen adsorption and desorption device for producing high-purity oxygen products by using a plurality of adsorption and desorption towers filled with an oxygen-selecting adsorption and desorption agent selected from BaMg(CO3)2 particles or particles in which either MgCO3 or Mg(OH)2 has been attached to the outside of BaMg(CO3)2, and also a continuous oxygen adsorption and desorption method using the device.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 6, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Ho Park, Tae Sung Jung, Hyung Chul Yoon, Young Tae Guahk, Hee-Tae Beum, Jong-kee Park, Sang-Sup Han, Jong-Nam Kim, Soon-Haeng Cho
  • Patent number: 8715393
    Abstract: Disclosed is a method for removing carbon dioxide from a gas stream, comprising placing the gas stream in contact with a resin, wetting the resin with water, collecting water vapor and carbon dioxide from the resin, and separating the carbon dioxide from the water vapor. The resin may be placed in a chamber or a plurality of chambers connected in series wherein the first chamber contains resin that was first contacted by the gas, and each successive chamber contains resin which has been wetted and carbon dioxide collected from for a greater period of time than the previous chamber, and so on, until the last chamber. Secondary sorbents may be employed to further separate the carbon dioxide from the water vapor.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 6, 2014
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ed Leon-Guerrero, Ursula Ginster, Tymothy Catterson, Karl Madison, Ryuhei Ishikawa, George W. Grimm, Mark Malcomson, Ping Liu
  • Patent number: 8679225
    Abstract: An electrostatic precipitator and a method of removal of particulates from gaseous flows. A plurality of screens, secured in sets within a central chamber in a housing, include at least one set of electrically chargeable first screens and at least one set of electrically grounded second screens. For each set of chargeable screens, all the screens of the set are provided with an identical electrical charge, either positive or negative, and the set is provided with a plurality of spikes directed at the oncoming gaseous flow. At least one screen cleaning unit selectively acts on the screens of each set. The precipitator can include a plurality of central chambers in a single housing or separate housings, and the chambers can be selectively activated or deactivated. The precipitator provides improved particulate removal from gaseous flows, including hot flows having temperatures up to at least 1200° C.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: March 25, 2014
    Assignee: Her Majesty the Queen in right of Canada as represented by the Minister of Natural Resources
    Inventors: Kourosh Zanganeh, Zahirul Hasan Khan, Carlos Salvador, Jack Jensen
  • Patent number: 8568511
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: October 29, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8500852
    Abstract: Methods, devices, and systems, and devices for carrying out sorption (adsorption and absorption) for separating and/or purifying fluid mixtures are disclosed. Medical oxygen generators, dehumidifying units, sorptive heat pumps, ozone generators and Peltier devices are also disclosed. The sorption methods involve pressure swing operation of at least two sorption units. Energy from the desorbing and decompressing fluid is substantially recovered and used within the system.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 6, 2013
    Assignee: Separation Design Group, LLC
    Inventor: S. Douglas Galbraith
  • Patent number: 8246909
    Abstract: A method measures a property of a germicidal solution in an endoscope processor spectroscopically by placing a quantity of the solution into a cuvette and passing a light therethrough. A reservoir receives a quantity of the solution and bubbles are filtered out via a cross-flow filter prior to putting a sample therefrom into the cuvette for measuring.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 21, 2012
    Assignee: Ethicon, Inc.
    Inventors: Hal Williams, Yan Fang, Richard Jackson
  • Patent number: 8197579
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 12, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8083836
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: December 27, 2011
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 7981177
    Abstract: A composite filter media for a vacuum cleaner comprising a first filtration layer comprising a slit film having a plurality of continuous electrostatically-charged polyolefin filaments disposed substantially parallel to each other along their lengths; and a second filtration layer comprising a high-efficiency filtration media selected from wet-laid filter paper, dry-laid filter paper, and nonwoven filter media; wherein said first filtration layer is disposed in series with said second filtration layer, with respect to an air flow direction through said vacuum cleaner, to form a composite.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 19, 2011
    Assignee: Transweb, LLC
    Inventor: Kumar Ogale
  • Patent number: 7947110
    Abstract: A method of operating a filtration system that filters flue gas, which includes particulate matter and a gaseous pollutant. The filtration system may include a fabric filter, which is cleaned with periodic pulse cleanings, a discharge electrode upstream of the fabric filter, which imparts an electric charge to at least some of the particulate matter before the particulate matter collects on the fabric filter, a sorbent, which is injected into the flue gas upstream of the fabric filter and absorbs at least some of the gaseous pollutant, and a fan, which draws the flue gas through the fabric filter. The filtration system may have a pulse cleaning interval setting that may be manipulated by an operator of the filtration system. The pulse cleaning interval setting may be the time between the pulse cleanings.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: May 24, 2011
    Assignee: General Electric Company
    Inventor: Robert W. Taylor
  • Publication number: 20100326272
    Abstract: Aspects of the invention include a method and apparatus for reversibly sorbing a target gas. In one embodiment, an apparatus for reversibly sorbing a target gas is disclosed. The apparatus includes an inlet, a multi-channel monolith coupled to the inlet, the multi-channel monolith including a plurality of channels, each one of the plurality of channels includes one or more walls, wherein at least one of the one or more walls of at least one of the plurality of channels is porous and wherein one or more of the plurality of channels contain a sorbent and an outlet coupled to the multi-channel monolith.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 30, 2010
    Inventors: MARIANNA F. ASARO, Yigal Blum
  • Patent number: 7708806
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: May 4, 2010
    Assignee: Global Research Technologies, LLC
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20100083828
    Abstract: A process for removing carbon dioxide from a gas stream by scrubbing the carbon dioxide from the gas stream with a mixture of ammonium and alkali carbonates such as sodium carbonate and/or potassium carbonate. Using the mixed alkali carbonate solution as the CO2 scrubbing solution offers the opportunity for both low regeneration energy and low ammonia volatility while still maintaining a high rate of CO2 hydration.
    Type: Application
    Filed: May 1, 2008
    Publication date: April 8, 2010
    Applicant: POWERSPAN CORP.
    Inventors: Joanna Duncan, Christopher McLarnon, Francis Alix
  • Publication number: 20100043633
    Abstract: Methods, devices, and systems, and devices for carrying out sorption (adsorption and absorption) for separating and/or purifying fluid mixtures are disclosed. Medical oxygen generators, dehumidifying units, sorptive heat pumps, ozone generators and Peltier devices are also disclosed. The sorption methods involve pressure swing operation of at least two sorption units. Energy from the desorbing and decompressing fluid is substantially recovered and used within the system.
    Type: Application
    Filed: April 30, 2007
    Publication date: February 25, 2010
    Applicant: Separation Design Group, LLC
    Inventor: S. Douglas Galbraith
  • Publication number: 20100024639
    Abstract: A method of operating a filtration system that filters flue gas, which includes particulate matter and a gaseous pollutant. The filtration system may include a fabric filter, which is cleaned with periodic pulse cleanings, a discharge electrode upstream of the fabric filter, which imparts an electric charge to at least some of the particulate matter before the particulate matter collects on the fabric filter, a sorbent, which is injected into the flue gas upstream of the fabric filter and absorbs at least some of the gaseous pollutant, and a fan, which draws the flue gas through the fabric filter. The filtration system may have a pulse cleaning interval setting that may be manipulated by an operator of the filtration system. The pulse cleaning interval setting may be the time between the pulse cleanings.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventor: Robert W. Taylor
  • Patent number: 7625428
    Abstract: Generally, systems for air and water purification using unpowered charged sorbent mediums (3) which may include layered double hydroxide (LDH) (1) compositions, lignin (2), and methods of sorbing inorganic or organic material(s) onto such mediums, including anionic contaminants (10), cationic contaminants (11), non-ionic organic contaminants (20), and even biological agents (7) such as bacteria or viruses present in liquids or gases.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: December 1, 2009
    Assignee: The University of Wyoming Research Corporation
    Inventors: Song Jin, Alan E. Bland, Terry H. Brown
  • Patent number: 7625435
    Abstract: An air/oil separator for use in a gas turbine engine includes a labyrinth path having an air/oil inlet, air outlet and oil outlet, a device for creating an electrical field within the labyrinth path and a device for creating a suction action at the oil outlet to draw liquid oil from the labyrinth path and for delivering the liquid oil under pressure to a pressurized source of oil in the engine.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 1, 2009
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Kevin Allan Dooley
  • Publication number: 20090266231
    Abstract: A method and apparatus for the separation of particles from a flow of gas, where both large, heavy and small, light particles can be separated off from the gas by means of the combined effect of an electrostatic attraction force and a centrifugal force in a centrifugal separator (10) of the type that comprises a rotor (14) that has a plurality of adjacent surface elements (16) with intermediate gas flow gaps (48) and that is mounted in such a way that it can rotate in a surrounding casing (12), which casing has an inlet (18) for unclean gas and an outlet (22) for clean gas and an outlet (24) for separated-of f particles. A charging unit (44) ionizes the particles upstream of the rotor (14). An electrical field is generated between adjacent surface elements (16) of the rotor in order to attract the ionized light particles towards a face of the surface elements by means of the electrostatic force.
    Type: Application
    Filed: June 27, 2006
    Publication date: October 29, 2009
    Inventors: Peter Franzen, Claes Inge, Torgny Lagerstedt
  • Publication number: 20090205491
    Abstract: The invention relates to a method for cleaning the filters of a vacuum cleaner comprising a dirt collecting container, which has a suction inlet and is in flow connection with at least one suction unit via at least one filter and at least one suction extraction line, and comprising at least one external air inlet which opens into the suction extraction line downstream of the filter and can be closed by means of a closing valve, wherein the closing valve has a movable valve body which is acted upon by a closing spring with a closing force and, in the closed position, additionally by a magnetic holder with a magnetic holding force, wherein, in order to clean the filter, at least one closing valve is opened and the side of the filter that is oriented away from the dirt collecting container is impinged upon by external air.
    Type: Application
    Filed: January 27, 2009
    Publication date: August 20, 2009
    Applicant: Alfred Kaercher GmbH & Co. KG
    Inventors: Daniel Eckstein, Thorsten Langen
  • Publication number: 20090120288
    Abstract: The present invention provides a method and apparatus for removing a contaminant, such as carbon dioxide, from a gas stream, such as ambient air. The contaminant is removed from the gas stream by a sorbent which may be regenerated using a humidity swing, a thermal swing, or a combination thereof. The sorbent may comprise a substrate having embedded positive ions and individually mobile negative ions wherein the positive ions are sufficiently spaced to prevent interactions between the negative ions. Where a thermal swing is used, heat may be conserved by employing a heat exchanger to transfer heat from the regenerated sorbent to an amount of sorbent that is loaded with the contaminant prior to regeneration.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Inventors: Klaus S. Lackner, Allen B. Wright
  • Patent number: 7294169
    Abstract: A method for operating a filter assembly having a filter medium includes applying a constant or nearly constant static DC potential to dust entering the filter assembly and the filter medium, passing dust-laden gas through the filter medium in a first direction through the filter assembly while the filter medium is statically charged with the DC potential, measuring pressure drop through the filter assembly, and, in response to the pressure drop meeting a preset limit, reversing the polarity of the DC potential to thereby allow dust particles on the filter medium to drop off the filter medium.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: November 13, 2007
    Assignee: General Electric Company
    Inventor: Robert W. Taylor
  • Patent number: 7258723
    Abstract: A particulate filter assembly includes an electrode assembly, a particulate filter positioned in an electrode gap defined between two electrodes of the electrode assembly, a power supply electrically coupled to the electrode assembly, and a controller for controlling operation of the power supply to apply a regenerate-filter signal to the electrode assembly to oxidize particulates collected by the particulate filter. An associated method of regenerating the particulate filter is disclosed.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 21, 2007
    Assignee: Arvin Technologies, Inc.
    Inventors: Wilbur H. Crawley, Randall J. Johnson, Stephen P. Goldschmidt
  • Patent number: 7146797
    Abstract: An exhaust gas purification system including a catching reactor for attracting particulate matters in an exhaust gas from an engine by electrostatic force, a main exhaust path and an auxiliary exhaust path provided on the exit side of the catching reactor, a PM filter provided in the auxiliary exhaust path for filtrating and processing the exhaust gas, and a flow path control valve for selectively connecting the exit side of the catching reactor to the main exhaust path or the auxiliary exhaust path.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: December 12, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hideo Yahagi
  • Patent number: 7048779
    Abstract: A method of removing mercury from a coal fired power plant exhaust gas includes passing the exhaust gas through a bulk particle filter to remove coarse particles, introducing powdered activated carbon into the exhaust gas downstream of the bulk particle filter, introducing mercury laden powdered activated carbon containing exhaust gas into a fine particle filter to separate the mercury containing powdered activated carbon from the exhaust gas, separating the powdered activated carbon from the mercury at an elevated temperature in an inert gas environment and recirculating the separating powdered activated carbon into the exhaust gas upstream from the fine particle filter. The desorption is preferably effected at a temperature of about 300 to 500° C. for about 5 to 60 minutes. The method is adapted to remove mercury which may be on the order of about 1 to 1000 ppm to 1 to 10 micrograms/cubic meter of exhaust gas. Corresponding apparatus is provided.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 23, 2006
    Assignee: Pittsburgh Mineral and Environmental Technology, Inc.
    Inventors: Thomas Weyand, Dale Nickels, Michael Sawayda
  • Publication number: 20040139853
    Abstract: In an apparatus for the purification of a gas which apparatus comprises three-conduit section, that is,
    Type: Application
    Filed: January 2, 2004
    Publication date: July 22, 2004
    Inventors: Andrei Bologa, Thomas Wascher, Hans-Rudolf Paur, Werner Baumann
  • Patent number: 6660061
    Abstract: A vapor filtration device including a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporize the collected particles thereby cleaning the filter. The filter can be a packed bed or serpentine filter mat, and an optional upstream corona wire can be utilized to charge airborne particles prior to their deposition on the filter.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 9, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Gary B. Josephson, William O. Heath, Christopher L. Aardahl
  • Publication number: 20030079982
    Abstract: A vapor filtration device comprising a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporizing the collected particles thereby cleaning the filter. The filter is disclosed as either a packed bed or serpentine filter mat, and optionally an upstream corona wire is utilized to charge airborne particles prior to their deposition on the filter.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 1, 2003
    Inventors: Gary B. Josephson, William O. Heath, Christopher L. Aardahl
  • Patent number: 6254787
    Abstract: Provided is a method for preparing a fluid containing size-controlled particles that is optimized with respect to use of a target fluid as a matrix fluid under conditions approximating actual conditions. In a preferred embodiment, size-controlled SiO2 particles are obtained by mixing and dispersing SiO2 starting particles having various sizes in a N2 carrier gas followed by fractionation with a fractionator. The size-controlled particles are electrostatically collected by a porous member from the carrier gas flow. Ultrasonic vibrations are then applied to the porous member while a HCl matrix fluid flows through the porous member loaded with the size-controlled particles. This causes release of the size-controlled particles from the porous member and their admixture and dispersion into the HCl matrix fluid.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: July 3, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Masao Kimura, Itsuko Suzuki, Kohei Tarutani
  • Patent number: 6106592
    Abstract: The present invention relates to a gas cleaning process and apparatus for removing solid and liquid aerosols entrained in a gas stream. The gas to be treated is passed through a wetted, electrostatically charged filter media. In accordance with a preferred embodiment of the present invention, the polarity of the electrostatic charge on the filter media is selected to enhance the removal of captured solid particles from the filter media. The apparatus is readily adaptable to a modular gas cleaning system configuration wherein varying numbers of the apparatus may be operated in parallel to provide a gas cleaning system of any desired gas flow capacity.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: August 22, 2000
    Assignee: Monsanto Company
    Inventors: Prabhakar D. Paranjpe, Lawrence F. Paschke
  • Patent number: 5938818
    Abstract: A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 17, 1999
    Assignee: Energy & Environmental Research Center Foundation
    Inventor: Stanley J. Miller
  • Patent number: 5893943
    Abstract: The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: April 13, 1999
    Assignee: ADA Environmental Solutions, LLC
    Inventors: Michael Dean Durham, Richard John Schlager, Timothy George Ebner, Robin Michele Stewart, Cynthia Jean Bustard
  • Patent number: 5738703
    Abstract: This invention is a method to produce a substitute for peat moss comprising:mixing in a mixer adsorptive cellulosic material with an effective amount of an inoculum containing cellulose degrading microorganism such as lignin cellulose degrading bacteria upon anaerobic fermentation and manure municipal waste or similar waste, manufactured feedstock or a blend of these,transferring said mixture to a chamber,allowing the temperature of said mixture to rise in said chamber until said cellulosic material changes color, thenaerating said mixture to remove water vapor, ammonia and other gases in an exhaust gas and then removing said mixture from said chamber for use as a substitute for peat moss and other uses.
    Type: Grant
    Filed: March 11, 1996
    Date of Patent: April 14, 1998
    Inventor: William E. Bandurski
  • Patent number: 5603910
    Abstract: A method for reducing pollution emissions from a glass melting furnace using electrostatic granular bed (EGB) technology. The granules in the EGB filter are themselves formed from an alkaline earth metal material. The granules react with sulfur compounds in the exhaust gas and form a layer of alkaline earth metal sulfates and sulfites in the granules. Simultaneously alkali metal-containing particles are deposited on the granules. The accumulated layers of pollutants are easily removed by mechanical agitation.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: February 18, 1997
    Assignee: Edmeston AB
    Inventor: Jeffery C. Alexander
  • Patent number: 5557923
    Abstract: The invention concerns a method and device for removing particles, in particular soot particles, from exhaust gases produced by internal-combustion engines. The invention calls for the particles to be electrostatically charged by an electrode (4). The particles or particle agglomerates are trapped by a fine-mesh metal filter (5). The conducting material (5a), preferably a sintered ferritic metal, of which the filter (5) is made can also be used as a collecting electrode. A high voltage (6) is applied (7, 10) to the electrodes. At intervals, preferably at regular intervals, an electric current is passed (11, 12) through the filter (5), causing the filter material (5a) to heat up to a temperature above the ignition temperature of the particles. The preferred shape of the filter surface is a cylinder, truncated cone and/or cone.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: September 24, 1996
    Assignees: Linde Aktiengesellschaft, GST Systeme, Gesellschaft Fur Abscheide-Und Steuertechnik mbH
    Inventors: Heinz Bolt, Franz Walser, Axel Schoneborn
  • Patent number: 5540755
    Abstract: A method for the selective control of the sulfur trioxide concentration in flue gases, to enhance the ash removal efficiency of electrostatic precipitators, which includes: catalytically converting a portion of the sulfur dioxide contained within the flue gas to sulfur trioxide, by passing a portion of such flue gas through at least one catalyst containing converter module which is positioned within such a flue gas stream; and selectively varying the quantity of flue gas passing through such module by providing an aspirating force to cause flue gas to be drawn through such a converter module.
    Type: Grant
    Filed: September 12, 1995
    Date of Patent: July 30, 1996
    Assignee: Wahlco, Inc
    Inventors: Fellix E. Spokoyny, Vincent F. Middleton
  • Patent number: 5529762
    Abstract: A method for reducing pollution emissions from a glass melting furnace using electrostatic granular bed (EGB) technology is disclosed. In one embodiment, sorbent dust containing an alkaline earth metal material, e.g., calcium, is injected into a prereactor for reaction with furnace exhaust gases. A layer of calcium material forms over the granules. These granules are co-mingled with granules from an EGB filter which, over a period of time, retain a layer of low resistivity alkali metal salt. The resulting mixture of granules maintains a high resistivity and therefore prolongs the life of granules used in the EGB filter. In an alternative embodiment, the granules in the EGB filter are themselves formed from an alkaline earth metal material. The granules react with sulfur compounds in the exhaust gas and form a layer of alkaline earth metal sulfates and sulfites in the granules. Simultaneously alkali metal-containing particles are deposited on the granules.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: June 25, 1996
    Assignee: Edmeston AB
    Inventor: Jeffery C. Alexander
  • Patent number: 5505766
    Abstract: A method for removing pollutants from a combustor flue gas. The method includes the steps of supplying sorbent to a baghouse having a filter bag therein until the filter bag is coated with a predetermined amount of sorbent and introducing the flue gas into the baghouse. Pollutants in the flue gas are sorbed by the sorbent on the filter bag. A system is provided for performing the method of the invention.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: April 9, 1996
    Assignee: Electric Power Research, Inc.
    Inventor: Ramsay Chang