Heat Exchanger To Regenerate Patents (Class 96/146)
  • Publication number: 20090205492
    Abstract: A system for reducing carbon dioxide emissions from gasses generated in burning fossil fuel, includes a vessel, separator and reheater. The upper portion of the vessel receives downward flowing, first type solid particles capable of absorbing heat from upward flowing gasses and second type solid particles capable of capturing carbon dioxide from the gasses. The separator separates the second type solid particles with the captured carbon dioxide from the gasses discharged from the first vessel discharge, and directs the separated second type solid particles with the captured carbon dioxide to a separator discharge. The reheater directs the first type solid particles and the second type solid particles with the captured carbon dioxide in a downwardly flow to a first reheater discharge, such that heat from the first type solid particles causes the captured carbon dioxide to be released from the second type solid particles.
    Type: Application
    Filed: February 16, 2009
    Publication date: August 20, 2009
    Applicant: ALSTOM Technology Ltd
    Inventors: Herbert E. Andrus, JR., Glen D. Jukkola, Michael S. McCartney
  • Patent number: 7572319
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube packed with an adsorbent, wherein the tube may serve as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: August 11, 2009
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins
  • Patent number: 7568355
    Abstract: Disclosed is a humidity control device which is provided with an adsorptive element (81, 82) having a humidity control passageway (85) capable of adsorption of moisture from a first air stream and of release of moisture to a second air stream, and which provides an air stream, the humidity of which is conditioned in the adsorptive element (81, 82), to an indoor space. In the humidity control device, the adsorptive element (81, 82) is provided with an auxiliary passageway (86) through which a heating fluid flows when the adsorptive element (81, 82) is regenerated by releasing moisture to a second air stream from the humidity control passageway (85). As a result, during regeneration of the adsorptive element (81, 82) by releasing moisture to a second air stream, the amount of release moisture is increased, thereby enhancing the device performance.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 4, 2009
    Assignee: Daikin Industries, Ltd.
    Inventor: Tomohiro Yabu
  • Publication number: 20090188387
    Abstract: A continuous concentration system for volatile organic compounds for concentrating volatile organic compounds that undergo an absorption process and a removal process includes: a moving-bed chamber in which modules for absorbing volatile organic compounds are absorbed. An absorption bed line to which the volatile organic compounds are supplied to be absorbed to the module is provided on one side of the moving-bed chamber. A removal-cooling bed line for performing a removal process for removing the volatile organic compounds absorbed to the module and a cooling process for cooling the module that has undergone the removal process is provided on the other side of the moving-bed chamber.
    Type: Application
    Filed: November 26, 2008
    Publication date: July 30, 2009
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventor: Sang-guk KIM
  • Patent number: 7563306
    Abstract: An apparatus and method of conditioning humidity and temperature in the process air stream of a desiccant dehumidifier used to dry moisture-laden spaces and structures by replacing moisture-laden air with dehumidified air to increase the rate of water evaporation within the affected areas. An air-dehumidifier comprises a dehumidification assembly having a desiccant rotor assembly, a shielded radiant burner assembly, and a control system. The shielded radiant burner assembly is used to regenerate the desiccant rotor by removing moisture from the reactivation quadrant, where high velocity (at least 500 ft/min) air streams are often flowed, by projecting radiant heat onto the rotor, while minimizing the potential for the high velocity air streams interrupting the combustion of air and fuel in the radiant burner.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: July 21, 2009
    Assignee: Technologies Holdings Corporation
    Inventors: Charles A. Boutall, Albert Keith Teakell
  • Publication number: 20090173376
    Abstract: The present invention is a desiccant system for controlling moisture in a solar collector. The desiccant system has a desiccant bed enclosed within a housing, and is thermally coupled to the solar collector as well as being fluidly coupled to it through an orifice. Waste heat from the solar collector is conducted to the desiccant system and is used to regenerate the desiccant bed. The desiccant system includes moisture barriers which cause moisture from the desiccant to preferentially be released to the external environment rather than entering the solar collector.
    Type: Application
    Filed: April 16, 2008
    Publication date: July 9, 2009
    Applicant: SOLFOCUS, INC.
    Inventors: Mark Spencer, Stephen Askins
  • Patent number: 7537642
    Abstract: A method and a device for discharging air current from a cooking area. The method and the device guide the air current through a sorption agent for absorbing water or water vapor contained in the air current. The sorption agent is regenerated preferably when the air current is not being discharged from the cooking area.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: May 26, 2009
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Joachim Damrath, Andreas Hauer, Martin Kornberger, Eberhard Laevemann
  • Publication number: 20090120284
    Abstract: An active adsorbent pollutant reducing system includes a canister containing activated carbon, a pump and a series of valves connected to the canister and the pump. The valves and pump of the system are controlled so that vapor/air in the ullage of a gasoline storage tank is pumped to the canister/adsorbent material when tank pressure reaches a first level with vapor being adsorbed and air being discharged to atmosphere. When a second tank pressure level, lower than the first tank pressure level, is achieved, the valves are controlled to reconfigure the pump and canister so that continued pump operation pulls a vacuum on the canister resulting in adsorbed gasoline vapor being purged from the adsorbent material and returned to the storage tank. Tank pressure, HC content in the vapor flow and canister weight can be used for control of the system.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventor: Rodger P. Grantham
  • Publication number: 20090120288
    Abstract: The present invention provides a method and apparatus for removing a contaminant, such as carbon dioxide, from a gas stream, such as ambient air. The contaminant is removed from the gas stream by a sorbent which may be regenerated using a humidity swing, a thermal swing, or a combination thereof. The sorbent may comprise a substrate having embedded positive ions and individually mobile negative ions wherein the positive ions are sufficiently spaced to prevent interactions between the negative ions. Where a thermal swing is used, heat may be conserved by employing a heat exchanger to transfer heat from the regenerated sorbent to an amount of sorbent that is loaded with the contaminant prior to regeneration.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Inventors: Klaus S. Lackner, Allen B. Wright
  • Patent number: 7517396
    Abstract: An apparatus for selectively adsorbing gas during adsorption processes and desorbing gas during desorption processes. A tube has a porous sidewall, and at each end is an end-fitting sealingly connected thereto. A particulate porous gas storage material is located within the tube, wherein the porosity prevents the material, but allows gases, to pass therethrough. A selected gas from a porous inner tube, a heating coil, or a heat exchanger located within the tube may provide heat for the desorption processes, and the selected gas or heat exchanger may provide cooling during the adsorption processes.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: April 14, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gerd Arnold, Ulrich Eberle, Dieter Hasenauer
  • Publication number: 20090025557
    Abstract: A domestic appliance including an adsorption unit and further including a process air conduit, wherein an adsorption container operates as a heat exchanger for heating a stream of air flowing in the process air conduit and being applied to the adsorption container, with the adsorption unit configured for alternate and reversible operation in a first operating state in which a stream of air flowing in the process air conduit is applied to the adsorption container and which adsorbs adsorptive evaporating in the phase transition container, and in a second operating state in which the adsorbing agent is heated by the heater and the adsorptive is desorbed, with desorbed adsorptive condensing in the phase transition container, the domestic appliance including an assembly operatively associated with the adsorption unit for applying a stream of air flowing in the process air conduit to the adsorption container in the second operating state.
    Type: Application
    Filed: December 12, 2006
    Publication date: January 29, 2009
    Applicant: BSH Bosch und Siemens Hausgeräte GmbH
    Inventors: Harald Moschütz, Andreas Stolze
  • Publication number: 20080302245
    Abstract: A canister includes a casing made of a material including a polyamide resin. The casing includes a charge port to let in fuel vapor, a purge port to let out desorbed fuel and an atmospheric air port to let in air. Granular adsorbing agent and granular heat storing agent are held in the casing. The adsorbing agent includes a granular activated carbon. The granular heat storing agent is mixed with the granular activated carbon in the casing, and the granular heat storing agent including the material of the casing.
    Type: Application
    Filed: September 26, 2007
    Publication date: December 11, 2008
    Applicants: MAHLE FILTER SYSTEMS JAPAN CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki Yoshida, Koji Yamazaki, Koichi Hidano, Shoichiro Kumagai, Takahiro Imamura
  • Publication number: 20080289495
    Abstract: A system for removing carbon dioxide from an atmosphere to reduce global warming including an air extraction system that collects carbon dioxide from the atmosphere through a medium and removes carbon dioxide from the medium; a sequestration system that isolates the removed carbon dioxide to a location for at least one of storage and which can increase availability of renewable energy or non-fuel products such as fertilizers and construction materials; and one or more energy sources that supply process heat to the air extraction system to remove the carbon dioxide from the medium and which can regenerate it for continued use.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 27, 2008
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 7455723
    Abstract: A hydrogen storage and release device (10) is provided for storing and releasing hydrogen from a metal hydride (30) contained in the device (10) based on heat transfer to or from a coolant flow provided through the device (10). The device (10) includes a housing (12) and a metal hydride containing a tube bundle located within the housing (12), with the exteriors (26) of the tubes (16) of the bundle (14) being reduced over a selected length to provide a free flow area for the coolant flow.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 25, 2008
    Assignee: Modine Manufacturing Company
    Inventors: Mark G. Voss, Joseph R. Stevenson, Gregory A. Mross
  • Publication number: 20080276802
    Abstract: A dryer and a drying apparatus attachable to a dryer are disclosed. A wheel having desiccant material is located in line and in close proximity with a heating element. The wheel includes a first portion positioned in an inlet air path and a second portion positioned in an outlet air path. The desiccant material removes water molecules from air within the inlet air path, and lowers the vapor pressure of the incoming air. In the outlet air path, heated air flows through the second portion to transfer energy to the desiccant material. The wheel rotates to change the desiccant material within the portions.
    Type: Application
    Filed: May 9, 2007
    Publication date: November 13, 2008
    Inventors: Charles Robert Dewald, III, Thomas L. Cristello
  • Patent number: 7449050
    Abstract: An apparatus for concentrating a vaporous substance, which comprises: a sorbent material capable of capturing a vaporous substance; a first housing in which the sorbent material is located, a heating element proximate the exterior of the housing; a second housing defining a chamber within which the first housing resides, the first housing being located in said chamber such that there is a space permitting gas flow between the outside of the first housing and the inside of the second housing; and a pump capable of causing an exhaust gas to flow through the space in contact with the outside of the first housing; and methods for making and utilizing such apparatus.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 11, 2008
    Assignee: Microsensor Systems, Inc.
    Inventors: Henry Wohltjen, Mark Klusty
  • Publication number: 20080229928
    Abstract: A sorption pumping system includes a conductive inner vessel having a sorbent material therein to adsorb gas molecules. An outer vessel is positioned about the inner vessel and includes a heat transfer flange connected thereto. A gas chamber is formed between the inner vessel and the outer vessel. The gas chamber is constructed to sealably contain a thermally conductive gas therein.
    Type: Application
    Filed: March 20, 2007
    Publication date: September 25, 2008
    Inventors: John A. Urbahn, Jan Ardenkjaer-Larsen
  • Publication number: 20080210084
    Abstract: It is intended to provide a volatile organic compound treatment apparatus having: an absorption treatment chamber in which absorption frames having absorbents for absorbing volatile organic compounds are aligned in a direction of a gas flow; an absorbent recovery treatment chamber that is provided with a discharge unit having a high voltage electrode, a ground electrode, and a dielectric; and a transfer mechanism for transferring the absorption frames present in an upstream of the gas flow to the absorbent recovery treatment chamber and transferring the absorption frames in the absorbent recovery treatment chamber to a downstream of the gas flow. The volatile organic compound treatment apparatus is capable of decomposing VOC without generating a large amount of harmful NOx and reduced in apparatus cost.
    Type: Application
    Filed: June 21, 2006
    Publication date: September 4, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kouji Ota, Yasutaka Inanaga, Yasuhiro Tanimura, Masaki Kuzumoto, Hajime Nakatani, Hideo Ichimura, Akio Masuda, Shigeki Maekawa, Masaharu Moriyasu
  • Patent number: 7416587
    Abstract: A thermally regenerative deodorizing filter, which comprises a deodorizing filter comprising a deodorant which is adaptable to a thermal regeneration and a honeycomb base material having a heat conductivity which carries the deodorant, and a heating element for regenerating the deodorizing filter which is integrated in the deodorizing filter, wherein the heating element is controlled to a predetermined temperature during the regeneration.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 26, 2008
    Assignee: Mitsubishi Paper Mills Limited
    Inventor: Yasuyoshi Kondo
  • Publication number: 20080184886
    Abstract: A thermal preconcentrator unit and a method for concentrating chemical species. The thermal preconcentrator unit includes a thermoelectric device having a temperature controlled surface and a sorbent material configured to concentrate the chemical species. The sorbent material is disposed on and in thermal contact with the temperature controlled surface. The thermoelectric device is configured to cool and heat the temperature controlled surface to promote sorption and desorption of chemical species onto and from the sorbent material. The method provides a temperature controlled surface and exposes the chemical species to a sorbent material disposed on the temperature controlled surface to concentrate the chemical species thereon.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: Research Triangle Institute
    Inventors: Jenia A. Tufts, Anthony L. Andrady, Teri A. Walker, David S. Ensor
  • Patent number: 7393381
    Abstract: A plurality of different layers of filter media are used to remove siloxanes from a gas stream. Based on an analysis of the specific gas stream to be filtered, a filter media having an average pore size enabling the preferential removal of a specific class of contaminants is selected for each different class of contaminants. The layers are arranged in sequential order such that contaminants having a higher molecular weight are preferentially removed by the first layers. Collectively, the layers define a segmented activity gradient that enables each class of contaminants present in the gas stream to be preferentially removed in a different layer, preventing removal competition between different classes of contaminants. Preferable adsorption media exhibit a relatively narrow range of pore sizes. Both inorganic adsorption media and carbon-based adsorption media exhibiting a relatively narrow range of pore sizes can be used.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: July 1, 2008
    Assignee: Applied Filter Technology, Inc.
    Inventors: Paul M. Tower, Jeffrey V. Wetzel
  • Patent number: 7384454
    Abstract: A water production unit is provided having two modes of operation for extracting water from exhaust and air.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: June 10, 2008
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Stephen Tongue
  • Patent number: 7377964
    Abstract: The present invention provides equipment for processing discharging exhaust gas. The equipment comprises an adsorption system, an incinerator, an exhaust connected to the incinerator, a first heat heat exchanger connected between the adsorption system and the incinerator, a windmill that has a first piping in the inlet and a second piping in the outlet, and a pipe connected between the adsorption system and the first piping. The equipment for processing discharging exhaust gas can effectively save energy and decrease costs.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 27, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Ching-Tien Lee, Wei-Jen Mai
  • Patent number: 7332015
    Abstract: A dehydrator breather is provided that includes automatic purging of accumulated moisture by detecting absorbed moisture in the breather, and closing an intake air channel, while opening an exit moisture channel. Adjustment of a default time-based purging cycle is adjusted to account for fluctuations in the detected moisture. An external communication capability is provided to enable off-site monitoring of the breather or the tank the breather is attached to.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: February 19, 2008
    Assignee: Waukesha Electric Systems, Inc
    Inventors: Thomas M. Golner, Shirish P. Mehta
  • Patent number: 7332017
    Abstract: Apparatus and methods useful for removal or reduction of moisture from fluids are described. In one embodiment the apparatus comprises a moisture separation unit comprising a thermally regenerable moisture adsorption material having feed and waste sides, and means for regenerating the thermally regenerable moisture adsorption material. The feed fluid contacts the feed side, while a dry, preferably heated purge gas flows past the waste side. The thermally regenerable moisture adsorption material is regenerated by contacting with the heated dry purge gas. The apparatus and methods are particularly useful in supplying dehydrated electronic specialty gases to semiconductor tools.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: February 19, 2008
    Assignee: The BOC Group, Inc.
    Inventor: Ravi Jain
  • Patent number: 7326281
    Abstract: A tank main body accommodates a heat exchanger including a heating medium pipe. A plurality of heat exchanger fins are coupled to the heating medium pipe to divide the interior of the tank main body into a plurality of spaces. A hydrogen storage alloy is provided in the spaces. An absorption portion is provided in the spaces. The absorption portion is deformed by a force generated by expansion of the hydrogen storage alloy, thereby absorbing the force. Therefore, the heat exchanger is prevented from being deformed or damaged even if the bulk density of the hydrogen storage alloy is reduced due to expansion and pulverization of the hydrogen storage alloy.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: February 5, 2008
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuyoshi Fujita, Hidehito Kubo, Masahiko Kimbara, Daigoro Mori
  • Patent number: 7326278
    Abstract: Decontamination systems and methods are disclosed. In one embodiment, a system comprises a first adsorption/desorption subsystem that is configured to receive a contaminated gaseous solution and remove substantially all of the contaminants from the contaminated gaseous solution during an adsorption cycle, while a second subsystem is configured to purge captured contaminants during a desorption cycle. An evacuator is configured to drive potentially flammable gas compositions from the subsystem operating in a desorption cycle back into the system such that potentially flammable gas compositions are purged from the subsystem operating in the desorption cycle at the beginning of the desorption cycle. A heat source is configured to heat contaminants adsorbed in the adsorption/desorption subsystems to remove the contaminants from the adsorption/desorption subsystems in a gaseous state during their respective desorption cycle.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: February 5, 2008
    Assignee: Purifics Environmental Technologies, Inc.
    Inventors: Brian E. Butters, Anthony L. Powell, John Douglas Pearce, Matthew Brian Frederick Murdock
  • Patent number: 7323043
    Abstract: A container for storing hydrogen comprises an outer shell having an inlet for inputting hydrogen gas and an outlet for outputting hydrogen gas. A thermally conductive liner lines an interior of the outer shell. An inner hydride core is in communication with the inlet and the outlet for storing the hydrogen gas. Coolant lines are in thermal communication with the storage container. A thermal management controller determines whether the container is in a dispensing mode or a refueling mode. If the container is in the dispensing mode, the coolant lines may be routed to a first heat exchanger that is in thermal communication with a propulsion unit of a vehicle. However, if the container is in the refueling mode, the coolant lines may be routed to a second heat exchanger associated with a temperature that is less than or equal to the ambient temperature outside of the vehicle.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: January 29, 2008
    Assignee: Deere & Company
    Inventor: Peter Finamore
  • Publication number: 20080006152
    Abstract: A method of processing a volatile organic compound is provided, wherein a volatile organic compound contained in gas to be treated is adsorbed in an adsorbent; the thus-adsorbed volatile organic compound is desorbed with the aid of steam and mixed in the steam; and the steam containing the volatile organic compound is combusted. This method further includes: separating a vessel for the adsorption and desorption into an inner side room and an outer side room by means of a separation member part of which is formed of the adsorbent; thermally retaining the vessel for the adsorption and desorption; at the time of adsorption, supplying the gas to be treated to the inner side room and therefrom to the outer side room; and at the time of desorption, supplying the steam to the outer side room and therefrom to the inner side room.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 10, 2008
    Inventors: Shigekazu UJI, Masahito YAMAGUCHI
  • Patent number: 7316731
    Abstract: Contaminant is removed from a gaseous stream, especially an air stream bearing the contaminant, by adsorption on a sorbent which is a resiliently compressible, electrically conductive, activated carbon cloth material, leaving a gaseous stream liberated of the contaminant; the carbon cloth material loaded with the contaminant may be regenerated by desorption of the contaminant; the carbon cloth material loaded with contaminant is housed in a vacuum and electric current is passed through the carbon cloth material generating heat in the cloth material which is effective to desorb the contaminant which is exhausted under vacuum; the level of heat generated is varied as required, typically to develop a temperature of 250 to 500° C. in the cloth material, by varying the compression of the cloth material; desorption is typically achieved in about 30 minutes at a vacuum of 10 Torr or less.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: January 8, 2008
    Assignee: McGill University
    Inventors: Jean-Pierre Farant, Gerald Desbiens
  • Patent number: 7311757
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube having a restricted outlet and packed with an adsorbent, wherein the tube serves as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: December 25, 2007
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins
  • Patent number: 7300481
    Abstract: The invention relates to a method for cleaning filters for dust-laden waste gases, including several filter elements (2) which are arranged vertically in a filter housing (1) and which have an upper open end (16) and a lower closed end (15) with at least one feed line (9) for the dust-laden waste gases and at least one discharge line (11) for the cleaned waste gases, in addition to a device for injecting surges of compressed air into the open end (16) of the filter elements (2). In order to reduce pressure fluctuations in the filter and to provide efficient cleaning with pulsations of compressed air in the low pressure range i.e. from approximately 0.8 to 3 bars, the filter is divided into several filter modules (1) respectively including at least one filter element (2). At least two filter modules (1) are arranged in a filter housing (10) or a filter chamber.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: November 27, 2007
    Assignee: Scheuch GmbH
    Inventor: Alois Scheuch
  • Patent number: 7284384
    Abstract: Dessicants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel and powered by a pair of separately fused electrical circuits, one of which powers a first blower drawing ambient air from outside the building over the heat exchanger and through a dessicant in a first direction, and the other of which powers a second blower drawing moisturized air from within the building through the dessicant in a second direction.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 23, 2007
    Inventor: Spencer W. Hess
  • Patent number: 7284386
    Abstract: Dessicants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel, with the dessicants, the dehumidifying apparatus and the diesel fuel all being carried on a trailer, with the diesel fuel inside under a skid and with its own portable electric panels with ground fault interrupters aboard in bringing its own electric power to the scene of the water-damaged building.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 23, 2007
    Inventor: Spencer W. Hess
  • Patent number: 7284387
    Abstract: Dessicants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel, with portions of the air drawn through the dessicant in both directional air flow paths being used to heat the water-damaged building.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 23, 2007
    Inventor: Spencer W. Hess
  • Patent number: 7284385
    Abstract: Dessicants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel, with a portion of the dehumidified air being diverted to join with the ambient air in increasing the liberation of the moisture within the dessicant.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 23, 2007
    Inventor: Spencer W. Hess
  • Patent number: 7284383
    Abstract: Rotating wheel dessicants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel, with the rotating wheel dessicant being turned by a grip notch belt stretched onto the wheel.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 23, 2007
    Inventor: Spencer W. Hess
  • Patent number: 7264648
    Abstract: A plurality of different layers of filter media are used to remove siloxanes from a gas stream. Based on an analysis of the specific gas stream to be filtered, a filter media having an average pore size enabling the preferential removal of a specific class of contaminants is selected for each different class of contaminants. The layers are arranged in sequential order such that contaminants having a higher molecular weight are preferentially removed by the first layers. Collectively, the layers define a segmented activity gradient that enables each class of contaminants present in the gas stream to be preferentially removed in a different layer, preventing removal competition between different classes of contaminants. A polymorphous graphite is used as the filter media, because that material is available in a range of well-controlled pore sizes, as opposed to conventional activated carbon filter media, which generally exhibits poorly-controlled pore sizes.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 4, 2007
    Assignee: Applied Filter Technology, Inc.
    Inventors: Jeffrey V. Wetzel, Paul M. Tower
  • Patent number: 7241331
    Abstract: The present invention provides a metal hydride canister apparatus having structures capable of discharging hydrogen gas uniformly and exchanging heat effectively, comprising: a shell having a joint arranged in a central hole located on top of the shell, and two via holes arranged respectively at a side of the central hole; a filtering rod connecting to the joint; a pipe having a first end, a second end and a middle section between the first end and the second end; and a metal hydride stored inside the shell; wherein, the first end and the second end of the pipe pass the corresponding via hole in respective, and the middle section of the pipe forms a twin spiral structure wrapping around the filtering rod, the middle section having a first loop interconnecting to a second loop.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: July 10, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Chou-Zong Wu, Chi-Tang Hsu
  • Patent number: 7211228
    Abstract: A heater is disposed in contact with a hydrogen storage unit filled with a hydrogen absorption material. The heater includes at least one combustion chamber which includes a catalyst carrier and in which a combustible gas is burned, a combustible gas burning catalyst carried on the catalyst carrier, at least one combustible gas introduction chamber adjoining the combustion chamber with its chamber wall interposed therebetween, a plurality of combustible gas inlets disposed in a dispersed manner in the chamber wall to permit the combustion chamber and the introduction chamber to communicate with each other, and a combustion gas outlet communicating with the combustion chamber. Thus, the degree of uniformity of a temperature profile is decreased.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: May 1, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takanori Suzuki, Fumiaki Aono, Manabu Ito, Izuru Kanoya, Mitsuya Hosoe
  • Patent number: 7147695
    Abstract: Devices for enhancing the sensitivity of a microsensor or any other micro device by providing on-line preconcentration. Microconcentrators that can be integrated with a sensor or a micromachined GC to enhance the signal to noise ratio can include a miniaturized sorbent trap fabricated on a microchip. The microconcentrator can be made on a silicon substrate so that a sensor can be integrated on the same chip. The microconcentrator is composed of at least one microchannel lined with a microheater for in-situ heating. Preconcentration may be achieved on a thin-film polymeric layer deposited above the heater in the microchannel. Rapid heating by the channel heater generates a “desorption pulse” to be injected into a detector or a sensor.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: December 12, 2006
    Assignee: New Jersey Institute of Technology
    Inventor: Somenath Mitra
  • Patent number: 7115152
    Abstract: A regenerable filter system includes a flow path along which a stream of fluid flows between an inlet and an outlet. A first filtering unit is located in the flow path. The first filter unit includes first and second regenerable filter beds, wherein each bed has a first adsorbent for removing a first contaminant from the fluid stream. A first valve is located between the inlet and the first and second filter beds for selectively directing the fluid stream through one of the first and the second filter beds. The other of the first and second filter beds is removed from the flow path. A second filtering unit is located in the flow path between the first filtering unit and the outlet. The second filtering unit includes third and fourth regenerable filter beds for removing a second contaminant from the stream of fluid.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: October 3, 2006
    Inventors: David K. Friday, John L. Creed
  • Patent number: 7115159
    Abstract: In a hydrogen storing tank (solid filling tank) in which a hydrogen absorbing alloy (solid) is filled, a heat exchanger for executing heat exchange with the hydrogen absorbing alloy is constructed by laminating alternately first heat-transferring fins formed in corrugated plate shape and second heat-transferring fins formed in flat plate shape. Partitioned portions that are partitioned by the first heat-transferring fins and the second heat-transferring fins restrict movement of hydrogen absorbing alloy powders (MH powders) in a subsiding direction. Therefore, movement of the MH powders can surely be prevented by not using members that has no concern with the heat exchange and reduces an amount of filled MH powders and a volume in which the heat exchanger is provided.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: October 3, 2006
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Katsuyoshi Fujita, Hidehito Kubo, Keiji Toh, Akiko Kumano, Daigoro Mori
  • Patent number: 7066986
    Abstract: An adsorber vessel for use in the adsorption of a component from a gas and subsequent regeneration by thermally induced desorption of the component comprises an inlet for regeneration gas having an inlet nozzle containing at least one heater element, and an outlet for regeneration gas, the inlet and outlet for regeneration being separated by a flow path including a flow chamber containing a body of adsorbent, and wherein the body of adsorbent has a first end which is adjacent the inlet for regeneration gas and a second end which is remote from the inlet for regeneration gas, and the or each heater element is located so as not to penetrate through the first end of the body of adsorbent.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: June 27, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Christopher Richard Haben, Mohammad Ali Kalbassi, Declan Patrick O'Connor
  • Patent number: 7037360
    Abstract: An adsorbent for regenerator systems, to a heat utilization system and a regenerator system that comprise the adsorbent, and to a ferroaluminophosphate and a method for production thereof. More precisely, the invention relates to an adsorbent favorable for regenerator systems, which efficiently utilizes the heat source obtainable from cars and the like to thereby realize efficient regenerator systems, to a regenerator system that comprises the adsorbent, to a ferroaluminophosphate to be the adsorbent favorable for regenerator systems, and to a method for production thereof.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: May 2, 2006
    Assignees: Mitsubishi Chemical Corporation, Denso Corporation
    Inventors: Kouji Inagaki, Atsushi Kosaka, Satoshi Inoue, Yasukazu Aikawa, Takahiko Takewaki, Masanori Yamazaki, Hiromu Watanabe, Hiroyuki Kakiuchi, Miki Iwade
  • Patent number: 7029521
    Abstract: Process in conjunction with the production of oxygen (22), wherein incoming air (10, 16, 16a, 16b,) is brought to pass through a sorbent/zeolite structure (18), which comprises at least three zeolite units (50a–f) intermittently operated in a first stage comprising adsorption of nitrogen from the air and a second stage comprising desorption (20, 20a, 20b) of thus adsorbed nitrogen. At least two of the zeolite units are operated in the adsorption stage, the incoming air being brought to pass consecutively (53a) through the at least two zeolite units to form an increasing nitrogen gradient; and/or at least two units of the zeolite units are operated in the desorption stage, a pressure being released and/or a desorbing gas (22a, 22b) being brought to pass consecutively (53b) through the at least two zeolite units to form a decreasing nitrogen gradient in the zeolite units.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: April 18, 2006
    Assignee: Ifo Ceramics Aktiebolag
    Inventor: Thomas Johansson
  • Patent number: 7025931
    Abstract: The present invention reduces the amount of oxygen in an oxygen-containing gas within a closed environment. A selected amount of hydrogen gas is mixed with a portion of the oxygen-containing gas from the closed environment to form a first gas mixture. A catalyst exposed to the first gas mixture causes a reaction between the hydrogen and at least a portion of the oxygen therein. The resulting second gas mixture, which is returned to the closed environment, has a lower percentage of oxygen. At least one oxygen sensor is positioned in the closed environment to determine when oxygen levels in the closed environment reach a threshold level. The output signal from the sensor is used to control when and/or how much hydrogen is mixed in the first gas mixture.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: April 11, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Marshall L. Nuckols, Kirk Vanzandt
  • Patent number: 6991770
    Abstract: A hydrogen storage tank has an outer cylinder and a cylindrical hydrogen storage module within the outer cylinder spaced apart from an inner peripheral surface of the outer cylinder to provide a hydrogen passage therebetween. The cylindrical hydrogen storage module includes a lamination having a plurality of hydrogen storage units filled with powdery hydrogen absorption material and a hydrogen absorption and desorption surface on an entire outer peripheral surface, while interposing a heating/cooling element between ones of adjacent units. First and second main passages penetrate the lamination in a lamination direction of the units, and permit heating fluid and cooling fluid to flow therethrough. Sub passages branch from the main passages and extend over within each of the heating/cooling elements.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: January 31, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takanori Suzuki, Izuru Kanoya, Mitsuya Hosoe
  • Patent number: 6984258
    Abstract: Method and apparatus for treating a gas by adsorption. A gas is compressed and then treated by being circulated in an adsorber. A regenerating fluid is indirectly heated by the gas coming from the compressor. In a second regeneration phase, the regenerating fluid is sent directly to the adsorber, while the treated gas is refrigerated by an auxiliary refrigerator.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: January 10, 2006
    Assignee: L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Norbert Niclout, Marc Wagner
  • Patent number: 6974495
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube having a restricted outlet and packed with an adsorbent, wherein the tube serves as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: December 13, 2005
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins