Heating Or Cooling Means Patents (Class 96/242)
  • Patent number: 11660486
    Abstract: The invention comprises a fire extinguisher and method, wherein the fire extinguisher has a sealable high-pressure container that forms a hollow interior connected by a valve to an environment external to the said container. The said container holds at a high pressure at room temperature a composition of liquid carbon dioxide and a non-hydrate, hydrophobic, cyclic organo-siloxane compound, the said compound further having a freezing point of at least ?20° C. at one atmosphere. Upon release of the combination to the environment external to the container, the compound further produces a clathrate. In at least one embodiment of the invention, both the clathrate and the non-hydrate, hydrophobic, cyclic organo-siloxane compound have firefighting conductive properties.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: May 30, 2023
    Inventors: Dieter R. Berndt, Thomas W. Berndt
  • Patent number: 11634325
    Abstract: The invention relates to an absorber column and to the use thereof for separation of unwanted, especially acidic, gas constituents, for example carbon dioxide and hydrogen sulfide, from a crude synthesis gas by absorption with an absorbent, especially under low load states of the absorber column in relation to the synthesis gas velocity. According to the invention, a defined concentration of carbon dioxide in the clean synthesis gas is established by mixing at least a portion of the absorbent regenerated by flash regeneration with the absorbent regenerated by means of hot regeneration prior to the recycling thereof into the absorber column.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 25, 2023
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Alfred Gubrinski, Sandra Jensen, Sharon Corbet
  • Patent number: 11612851
    Abstract: A carbon dioxide recovery system includes: a heat exchanger that is disposed between a boiler and a desulfurization device, configured to cool exhaust gas flowing from the boiler to the desulfurization device, and configured to heat a heat medium; and a carbon dioxide recovery device that is configured to, when supplied with heat of the heat medium, separate and recover carbon dioxide from an absorber which has absorbed the carbon dioxide.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: March 28, 2023
    Assignee: THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Satoshi Kuwano, Takaaki Seno, Kojiro Yamano, Atsushi Katsuma
  • Patent number: 11480042
    Abstract: Systems and methods for separation of hydrocarbon containing fluids are provided. More particularly, the disclosure is relevant to separating fluids having a gas phase, a hydrocarbon liquid phase, and an aqueous liquid phase using indirect heating. In general, the system uses a first three-phase gas separation. The gas stream separated out is cooled with the resulting hydrocarbon condensates reintroduced to the stream of hydrocarbon-liquid phase that was separated from the fluid. The resulting combined stream can be cooled or heated as necessary.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 25, 2022
    Assignee: John Zink Company, LLC
    Inventors: Gene Bittel, Errol Calvert, Hai Lai, Melissa Lenhart, Brock Peoples, Stephen Rehm, Ahmed Sheikh
  • Patent number: 11439858
    Abstract: The invention comprises a fire extinguisher and method, wherein the fire extinguisher has a sealable high-pressure container that forms a hollow interior connected by a valve to an environment external to the said container. The said container holds at a high pressure at room temperature a composition of liquid carbon dioxide and a non-hydrate, hydrophobic, cyclic organo-siloxane compound, the said compound further having a freezing point of at least ?20° C. at one atmosphere. Upon release of the combination to the environment external to the container, the compound further produces a clathrate. In at least one embodiment of the invention, both the clathrate and the non-hydrate, hydrophobic, cyclic organo-siloxane compound have firefighting conductive properties.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: September 13, 2022
    Inventors: Dieter R. Berndt, Thomas W. Berndt
  • Patent number: 9427697
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes reacting at least a portion of CO2 in the gas stream with a plurality of liquid sorbent particles to form a plurality of solid adduct particles and a first CO2-lean gas stream; the solid adduct particles entrained in the first CO2-lean gas stream to form an entrained gas stream. The method includes separating at least a portion of the plurality of solid adduct particles from the entrained gas stream in a separation unit to form an adduct stream and a second CO2-lean gas stream. The method further includes heating at least a portion of the adduct stream in a desorption unit to form a CO2 stream and a regenerated liquid sorbent stream. A system for separating CO2 from a gas stream is also provided.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 30, 2016
    Assignee: General Electric Company
    Inventors: Tiffany Elizabeth Pinard Westendorf, Sarah Elizabeth Genovese, Benjamin Rue Wood, John Brian McDermott
  • Patent number: 9427695
    Abstract: A chilled ammonia capture system for capturing carbon dioxide from a flue gas stream comprises a first absorber and a second absorber. The first absorber operates at a temperature of about 25 to about 50 degrees Celsius. The operating temperature permits the use of a lower circulation rate, which leads to smaller diameter vessels and to fewer recirculation pumps, which in turn leads to lower operating and maintenance costs.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 30, 2016
    Assignee: ALSTOM Technology Ltd
    Inventors: Sandra Guidolin, Joseph P. Naumovitz, Peter Kniesburges
  • Patent number: 9295940
    Abstract: Acid gas is removed from a high pressure feed gas that contains significant quantities of CO2 and H2S. In especially preferred configurations and methods, feed gas is contacted in an absorber with a lean and an ultra-lean solvent that are formed by flashing rich solvent and stripping a portion of the lean solvent, respectively. Most preferably, the flash vapors and the stripping overhead vapors are recycled to the feed gas/absorber, and the treated feed gas has a CO2 concentration of less than 2 mol % and a H2S concentration of less than 10 ppmv, and more typically less than 4 ppmv.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 29, 2016
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 9233337
    Abstract: A regeneration tower 7 of a CO2 recovery unit includes an upper regeneration portion 51 that has a tray portion 45, a lower regeneration portion 52 provided below the upper regeneration portion 51 and having a liquid dispersion portion 46, and a supply line L5 that supplies absorbing liquid stored in the tray portion 45 to the liquid dispersion portion 46. The supply line L5 is provided with a heat exchanger 53, and the absorbing liquid is circulated using the density difference between the absorbing liquid flowing before the heat exchanger 53 and the absorbing liquid flowing after the heat exchanger 53 as a driving force. This reduces the cost of equipment while reducing the power in the delivery of the absorbing liquid in the regeneration portion.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: January 12, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koji Nakayama, Takahito Yonekawa, Masayuki Inui, Tatsuya Tsujiuchi, Osamu Miyamoto, Yoshiki Sorimachi
  • Publication number: 20150135954
    Abstract: The methods apparatuses described herein involve recovering of glycol from an aqueous phase to form a stream of recovered glycol and a glycol recovery system. The aqueous phase is fed to the top of a lower theoretical stage in a distillation column. An overhead vapour stream is drawn from the distillation column overhead of an upper theoretical stage, and a bottom stream comprising a stream of regenerated glycol is drawn from the distillation column via a bottom outlet configured below the lower theoretical stage. The stream of recovered glycol comprises the regenerated glycol. In addition, a first middle theoretical stage is situated within the distillation column gravitationally above the lower theoretical stage and below the upper theoretical stage. A side stream of liquid water is drawn from the bottom of the upper theoretical stage in the distillation column.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 21, 2015
    Inventors: Bei Li, Stephen John Mills, Johan Jan Barend Pek
  • Publication number: 20150135960
    Abstract: Provided is a CO2 recovery system including: a high-pressure absorption tower 13 that removes CO2 from high-pressure gas 11; a high-pressure regeneration tower 15 that releases a portion of CO2 from a rich solution 14 introduced from the high-pressure absorption tower to obtain a semi-lean solution 19; a first liquid feed line that feeds the semi-lean solution to the high-pressure absorption tower; a branch line that branches a portion of the semi-lean solution fed from a liquid feed line; and a flash drum 21 that flashes the semi-lean solution.
    Type: Application
    Filed: July 11, 2013
    Publication date: May 21, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshio Seiki, Kouji Horizoe, Atsuhiro Yukumoto, Haruaki Hirayama, Masaki Yushima
  • Publication number: 20150128802
    Abstract: A natural gas dehydration system and method includes a contactor, a flash tank, and a still interconnected by a desiccant circulation system. A reboiler is coupled to the still and the flash tank to burn the flash gas from the flash tank and heat the desiccant. A secondary burner is associated with a vent stack of the reboiler to burn the flash gas from the flash tank when not firing the reboiler.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 14, 2015
    Inventor: David H. Moneyhun
  • Patent number: 8974584
    Abstract: A gas scrubber, equipped with heat exchanger surfaces constructed of thermoplates, suitable for cooling and cleaning a hot gas by avoiding an excessive thermal load of the washing liquid.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 10, 2015
    Assignee: Lurgi GmbH
    Inventors: Frank Castillo-Welter, Christoph Steden, Dominic Walter, Georg Ehring, Martin Müller-Hasky
  • Patent number: 8961663
    Abstract: An apparatus that separates and recovers CO2 from a CO2 absorbent that has absorbed CO2 includes a regeneration tower configured to apply heat to the CO2 absorbent that has absorbed CO2, configured to separate and remove CO2 from the CO2 absorbent, configured to exhaust CO2 gas, and configured to regenerate the CO2 absorbent, a plurality of compressors configured to compress the CO2 gas exhausted from the regeneration tower, a dehydration device provided between the plurality of compressors and configured to remove moisture from the compressed CO2, and a line configured to supply air or N2 gas into the dehydration device to preliminarily operate the dehydration device until a stable state is achieved before starting the compressor.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Taku Asano, Tatsuya Tsujiuchi, Richard Reinke
  • Patent number: 8961665
    Abstract: There is provided an exhaust gas treatment system including a CO2 recovery unit with further enhanced energy efficiency. The exhaust gas treatment system (1) includes: a CO2 recovery unit (10) including a CO2 absorption column (11), an absorbing solution regeneration column (16), a condensate supply pipeline (15) for supplying condensate, which contains CO2 absorbing solution discharged from the CO2 absorption column (11) to a bottom portion of the absorbing solution regeneration column (16), and a CO2 separation section (22) for performing heat exchange, via a heat exchanger (23), between the CO2 discharged from the absorbing solution regeneration column (16) and the condensate; and an exhaust gas heat exchanger (5) provided on a gas upstream side of the CO2 recovery unit (10) for performing heat exchange between exhaust gas before flowing into the CO2 recovery unit (10) and the condensate.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita, Motofumi Ito, Takashi Kamijo, Tatsuto Nagayasu, Takuya Okamoto
  • Publication number: 20150040766
    Abstract: In the present invention, liquid absorbent is cooled or heated during off-peak hours of electricity demand to prevent the margin between electricity supply and demand from being tightened. A humidity control apparatus switches an absorbent circuit between a regenerated position in which a regeneration circuit is formed, and a humidity-controlled position in which a humidity control circuit is formed. In the regeneration circuit, during a period during which humidity control operation is stopped, outlet and inlet ends of a regeneration passage communicate with each other, and liquid absorbent circulates within the regeneration passage. In the humidity control circuit, during the humidity control operation, a humidity control passage and the regeneration passage communicate with each other, and liquid absorbent circulates between the humidity control passage and the regeneration passage.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 12, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Naotoshi Fujita, Shuji Ikegami
  • Publication number: 20150027310
    Abstract: A carbon capture system, such as a chilled ammonia process, is provided that includes with a cooling system, a carbon dioxide absorption system and an ammonia absorption system. The ammonia absorption system includes an absorber column to receive carbon dioxide lean gas stream having ammonia and to receive an absorbent, wherein the absorbent absorbs ammonia from the carbon dioxide lean gas stream to provide an ammonia reduced gas stream and an ammonia rich absorbent. Further, an ammonia stripper is provided to receive the ammonia rich absorbent and to receive a portion of the gas stream, wherein the gas stream flows through the ammonia stripper to heat the ammonia rich absorbent to release the ammonia therefrom and provide an ammonia rich gas stream and an ammonia reduced absorbent.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Applicant: ALSTOM Technology Ltd
    Inventors: Ola Augustsson, Raul Tahoces
  • Publication number: 20150013539
    Abstract: A method for removal of a compound from a crude hydrocarbon gas stream to be obtained from a sub-sea well is disclosed. The method comprises bringing the crude hydrocarbon gas stream in contact with a treatment solution comprising an absorbent at least partly selective to the compound to be removed, thereby obtaining a rich treatment solution and a compound depleted gas stream, regenerating the treatment solution comprising the absorbent by desorbing the compound from the rich treatment solution, thereby obtaining a compound stream.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 15, 2015
    Inventors: Steinar Eriksen, Bodil Iren Hop, Torbjørn Ruud
  • Publication number: 20150013544
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 15, 2015
    Inventor: Elliott Moorhead
  • Patent number: 8932388
    Abstract: The present invention is related to an apparatus and a method for converting gas into fuel. The apparatus for converting gas into fuel in accordance with an embodiment of the present invention can include: a first gas processing unit discharging first fuel gas by removing hydrogen sulfide in the raw gas by spraying a solution; a second gas processing unit discharging second fuel gas by removing moisture in the first fuel gas; a third gas processing unit discharging third fuel gas by removing hydrogen sulfide remaining in the second fuel gas; and a solution reservoir supplied with the solution from at least one of the second gas processing unit and the third gas processing unit and storing the solution.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: January 13, 2015
    Assignee: Korea Electric Power Corporation
    Inventors: Jung-Keuk Park, Kwang-Beom Hur, Sang-Gyu Rhim, Jung-Bin Lee
  • Publication number: 20150005564
    Abstract: Methods and apparatuses for enhancing absorption of acid gas components from sour feed gas are provided. In an embodiment, a method for processing a gas includes contacting a feed gas stream which comprises hydrocarbon and hydrogen sulfide and carbon dioxide with a liquid absorbent in a multistage counterflow absorption zone to absorb hydrogen sulfide and carbon dioxide from the feed gas stream into the liquid absorbent. The method produces an effluent liquid stream rich in hydrogen sulfide and carbon dioxide and a treated gas stream. Further, the method includes removing a portion of the liquid absorbent from an interstage location in the multistage counterflow absorption zone. The portion of the liquid absorbent is cooled to form a cooled portion, and the cooled portion is returned to the interstage location.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Nikunj Tanna
  • Publication number: 20140366720
    Abstract: A method and system for removing carbon dioxide from flue gas emitted by a fossil fuel operated power plant. In the method and system, carbon dioxide is removed from the flue gas by an absorption process using a scrubbing liquid. The charged scrubbing liquid is regenerated in a desorption process. At least some of the energy required for the regeneration process is fed using low-pressure steam that is withdrawn from the steam-water circuit of the power plant before entering a low-pressure steam turbine. The low-pressure steam is fed to an intermediate steam turbine. The low-pressure steam is expanded to a discharge pressure of less than 3.5 bar and is then fed to the desorption process. The pressure for the desorption process is adjusted by a regulation device in accordance with the discharge pressure from the intermediate steam turbine.
    Type: Application
    Filed: August 6, 2012
    Publication date: December 18, 2014
    Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS GMBH
    Inventor: Johannes Menzel
  • Patent number: 8911539
    Abstract: A process and system for separating CO2 from a flue gas stream is disclosed. The process involves (a) contacting a flue gas stream containing water vapor and CO2 with an ionic absorbent under absorption conditions to absorb at least a portion of the CO2 from the flue gas stream and form a CO2-absorbent complex; wherein the ionic absorbent comprises a cation and an anion comprising an amine moiety; and (b) recovering a gaseous product having a reduced CO2 content.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: December 16, 2014
    Assignees: Chevron U.S.A. Inc., University of South Alabama
    Inventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, Jr., Kevin N. West, Hye Kyung Timken, Michael S. Driver
  • Patent number: 8906133
    Abstract: A process for cooling an acid that is withdrawn from an absorption apparatus of a sulfuric acid plant includes pumping the acid to be cooled from an acid pump tank and supplying the acid to a shell space of a heat exchanger. Water is supplied as a heat transport medium to heat transfer elements disposed in the shell space so as to at least partially convert, by heat transfer from the acid, the water to steam. The acid which was cooled in the heat exchanger is supplied back to the absorption apparatus. The water is separated from the steam in a steam drum. The separated water is recirculated to the heat exchanger using a pump.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 9, 2014
    Assignee: Outotec Oyj
    Inventors: Karl-Heinz Daum, Wolfram Schalk
  • Patent number: 8906141
    Abstract: An apparatus for separating and recovering CO2 from a CO2 absorbent, includes: a regeneration tower for regenerating the absorbent that has absorbed CO2 by heating it to separate and remove CO2 therefrom and to exhaust CO2 gas; a compressor for compressing the CO2 gas exhausted from the tower; and a heat exchanger for heating the absorbent in the tower by exchanging heat with a part of the compressed CO2 by the compressor which is introduced into the tower. The apparatus may include a plurality of the compressors and a plurality of the heat exchangers. The plurality of compressors is arranged in series to sequentially compress the CO2 gas exhausted from the tower. The plurality of heat exchangers is configured so that each part of the CO2 compressed by the plurality of compressors is introduced to the tower in parallel to exchange heat with the absorbent in the tower.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita
  • Patent number: 8900355
    Abstract: Impure carbon dioxide (“CO2”) comprising a first contaminant selected from the group consisting of oxygen (“O2”) and carbon monoxide (“CO”) is purified by separating expanded impure carbon dioxide liquid in a mass transfer separation column system. The impure carbon dioxide may be derived from, for example, flue gas from an oxyfuel combustion process or waste gas from a hydrogen (“H2”) PSA system.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 2, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Rodney John Allam
  • Publication number: 20140335589
    Abstract: Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: Roger D. Aines, Christopher M. Spadaccini, Joshuah K. Stolaroff, William L. Bourcier, Jennifer A. Lewis, Eric B. Duoss, John J. Vericella
  • Patent number: 8864887
    Abstract: A slug-containing vapor recovery system wherein pressure and/or fluid level sensors are provided which monitor for conditions caused by the entry of a slug of hydrocarbon liquid, including that caused by a plunger-lift system. The system can be configured to accommodate virtually any anticipated slug-events.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 21, 2014
    Inventors: Rodney T. Heath, Forrest D. Heath, Gary Heath
  • Publication number: 20140301927
    Abstract: In one embodiment, a carbon dioxide capturing system includes an absorption tower configured to bring a treatment target gas containing carbon dioxide into contact with an absorption liquid, and to discharge the absorption liquid having absorbed the carbon dioxide. The system further includes a regeneration tower configured to make the absorption liquid discharged from the absorption tower dissipate the carbon dioxide, and to discharge the absorption liquid having dissipated the carbon dioxide. The system further includes a treatment target gas line configured to introduce the treatment target gas into the absorption tower, a first introduction module configured to introduce a first gas having a higher carbon dioxide concentration than the treatment target gas into the treatment target gas line, and a second introduction module configured to introduce a second gas having a lower carbon dioxide concentration than the treatment target gas into the treatment target gas line.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 9, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuru Udatsu, Masatoshi Hodotsuka, Hideo Kitamura, Satoshi Saito, Haruki Fujimoto, Noriko Chiba
  • Patent number: 8852318
    Abstract: In a method for compressing a water-containing CO2-rich fluid wherein the CO2-rich fluid is compressed in a compressor located upstream from the compression step, an antifreeze agent is injected into the water-containing CO2-rich fluid in order to lower the water solidification temperature. The antifreeze agent-containing CO2-rich fluid is frozen, water is extracted from the frozen fluid, and the frozen fluid is compressed in the compressor.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: October 7, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'exploitation des Procedes Georges Claude
    Inventors: Alain Briglia, Arthur Darde
  • Patent number: 8845790
    Abstract: A method and system for removing gaseous contaminants from a gas stream by contacting the gas stream with a wash solution and regenerating the wash solution in a regeneration system for future use in removing gaseous contaminants from the gas stream.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 30, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Jonathan W. Leister, Barath Baburao, Frederic Vitse
  • Publication number: 20140275691
    Abstract: A system and method for efficiently removing hydrogen sulfide from a natural gas feed stream to produce a Stinson Process feed stream and an acid gas stream. A first solvent separates the majority of the carbon dioxide and hydrocarbons from the hydrogen sulfide in the natural gas feed to produce the Stinson feed stream. By removing the majority of the hydrogen sulfide prior to feeding the Stinson Process, a carbon dioxide stream suitable for use in flooding operations may be produced with the Stinson Process. The system and method also increase the concentration of hydrogen sulfide in the acid gas stream, making it suitable for sulfur recovery operations. The system and method are particularly suitable for natural gas feed streams containing 0.5%-20% hydrogen sulfide and at least 20% carbon dioxide. Operation in an anhydrous mode with the addition of nitrogen aids in solvent recovery for recycling.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Butts Properties, LTD.
    Inventor: Rayburn C. Butts
  • Patent number: 8828122
    Abstract: A system includes an acid gas removal (AGR) system configured to remove an acid gas from an untreated syngas to generate a treated syngas, a hydrogen separation system configured to receive the treated syngas to generate a non-permeate and a permeate, and an expander configured to expand the non-permeate to generate a cooled non-permeate. The AGR system includes a solvent chiller configured to cool a solvent via heat exchange with the cooled non-permeate.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Pradeep Stanley Thacker, Sachin Suhas Naphad, Rupinder Singh Benipal
  • Patent number: 8821615
    Abstract: The disclosure relates to a process for treating a gas mixture containing carbon dioxide and hydrogen sulphide, including the following steps: deacidificating the gas mixture by bringing the gas mixture into contact with a first lean absorbent solution stream, delivering a deacidified gas mixture, and a first rich absorbent solution stream; regenerating the first rich absorbent solution stream, delivering the first lean absorbent solution stream and a sour gas stream; distillating the sour gas stream, delivering a first carbon-dioxide-rich stream and a hydrogen-sulphide-rich stream; purifying the first carbon-dioxide-rich stream by bringing the first carbon-dioxide-rich stream into contact with a second lean absorbent solution stream, delivering a second carbon-dioxide-rich stream and a second rich absorbent solution stream, the molar concentration of carbon dioxide in the second carbon-dioxide-rich stream being greater than the molar concentration of carbon dioxide in the first carbon-dioxide-rich stream.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 2, 2014
    Assignee: Total S.A.
    Inventors: Claire Weiss, Renaud Cadours, Kamal Bouzalmata
  • Publication number: 20140238236
    Abstract: A CO2 recovery system and a CO2 recovery method include an absorption apparatus that causes CO2 in an exhaust gas to be absorbed by CO2 absorption liquid, a regeneration apparatus that heats the CO2 absorption liquid to separate CO2; a CO2 compression mechanism of a first turbine driving mechanism that is driven in conjunction with a first steam turbine to compress separated CO2, a reheating boiler that supplies LP steam exhausted from the first steam turbine in order to heat the CO2 absorption liquid, an auxiliary boiler that heats condensed water of the LP steam after the CO2 absorption liquid is heated to generate HP steam and supplies the HP steam to the first steam turbine, and a second turbine driving mechanism that supplies the HP steam generated in the auxiliary boiler to a second steam turbine and is driven in conjunction with the second steam turbine.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masayuki Inui, Takahito Yonekawa, Tiffany Wu, Tatsuya Tsujiuchi, Shintaro Honjo, Koji Nakayama
  • Publication number: 20140216263
    Abstract: A carbon dioxide recovery device can perform a carbon dioxide adsorption treatment, a carbon dioxide separation treatment, a carbon dioxide adsorbing material repair treatment, and a carbon dioxide adsorbing material manufacture treatment. The carbon dioxide recovery device includes: a casing including a fluid treatment passage, a gas supply port through which a fluid is supplied to the fluid treatment passage, and a gas exhaust port through which the gas supplied to the fluid treatment passage is discharged; a plurality of housing tanks provided in a fluid treatment passage and each configured to house carbon dioxide adsorbing materials K; and an adsorbing liquid supplying portion configured to supply an adsorbing liquid to the housing tanks. Passage opening-closing mechanisms configured to store the adsorbing liquid in or discharge the adsorbing liquid from the housing tanks are respectively provided at bottom portions of the housing tanks.
    Type: Application
    Filed: May 7, 2012
    Publication date: August 7, 2014
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventor: Tomoyuki Ogino
  • Patent number: 8795516
    Abstract: A gypsum dewatering device 2 installed in a desulfurization facility 105 in which sulfur oxide in flue gas G is absorbed by limestone in an absorber 1, includes a belt filter 22 that absorbs sulfur oxide and dewaters gypsum slurry SS fed from the absorber 1 to form a gypsum cake SC, a vacuum suction mechanism 23 that sucks moisture in the gypsum cake SC via the belt filter 22, a moisture measuring means H1 that measures a moisture content of the gypsum cake SC to be dewatered by the belt filter 22, a heating means 25 that heats the gypsum cake SC dewatered by the belt filter 22 by hot water or steam, and a control means 26 that controls a heated state by the heating means 25 when the moisture content of the gypsum cake SC input from the moisture measuring means H1 has exceeded a predetermined amount.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideki Ito, Naoyuki Kamiyama, Makoto Tsutsui, Seiji Kagawa, Tatsuto Nagayasu, Norikazu Inaba
  • Patent number: 8795415
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 5, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8790452
    Abstract: A system adapted to separate a natural gas feed stream into a sweetened gas stream, at least one liquid waste stream and at least one gaseous waste stream, and to discharge, recover or destroy the at least one liquid waste stream and the at least one gaseous waste stream.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 29, 2014
    Inventor: Richard Paul Posa
  • Patent number: 8790453
    Abstract: The present invention relates to a gas purification system for removal of acidic gases from a gas stream. The system comprises an absorption unit arranged for receiving a gas stream and contacting it with a wash solution stream and a cooling unit in fluid communication with the absorption unit. The cooling unit receives wash solution enriched with acidic gases from a first withdrawal level of said absorption unit, cools the enriched wash solution, and provides cooled, enriched wash solution to a first reintroduction level of the absorption unit upstream of the withdrawal level. The ratio of withdrawn wash solution is 10-90% of the total wash solution stream.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 29, 2014
    Assignees: Alstom Technology Ltd, Dow Global Technologies LLC
    Inventors: Barath Baburao, Craig Norman Schubert
  • Patent number: 8784532
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. The carbon dioxide then desorbs from the liquid sorbent using hollow-fiber contactors as a source of heat to liberate the carbon dioxide further separated by the hollow-fiber contactors from the liquid sorbent.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 22, 2014
    Assignee: Phillips 66 Company
    Inventors: Imona C. Omole, George F. Schuette
  • Patent number: 8778065
    Abstract: In a bubble-column vapor mixture condenser, a fluid source supplies a carrier-gas stream including a condensable fluid in vapor phase. The condensable fluid in liquid form is contained as a bath in a chamber in each stage of the condenser, and the carrier gas is bubbled through the bath to condense the condensable fluid into the bath. Energy from condensation is recovered to a coolant in a conduit that passes through the liquid in the stages of the condenser. The bubble-column vapor mixture condenser can be used, e.g., in a humidification-dehumidification system for purifying a liquid, such as water.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 15, 2014
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum & Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa Hamed Elsharqawy
  • Patent number: 8758483
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 24, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8753440
    Abstract: The present embodiments are directed towards the cooling of a solvent of a gas treatment system using a fluid flow from an air separation unit. In one embodiment, a system is provided that includes an air separation unit. The air separation unit has an air inlet configured to receive an air flow, an oxygen outlet configured to output an oxygen flow, a nitrogen outlet configured to output a nitrogen flow and a cooling system configured to cool the air flow to enable separation of the air flow into the oxygen flow and the nitrogen flow, wherein the cooling system is configured to cool a first solvent of a first gas treatment system.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Fredric Samuel Russ, George Frederick Frey, Charles Martin Mitchell, Paul William Plummer
  • Publication number: 20140150652
    Abstract: A flue gas treatment system includes a CO2 absorber having an inlet for receiving a SO3 aerosol containing gas in the CO2 absorber. An amine solvent is supplied to the CO2 absorber. The CO2 absorber has a high temperature region and a lower temperature region. The high temperature region is configured to create an amine vapor and the lower temperature region is configured to cause the amine vapor to condense on the SO3 aerosol creating SO3/amine droplets. A SO3 aerosol removal device is positioned downstream of the CO2 absorber for removing the SO3/amine droplets from the gas.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventor: Stephen Alan Bedell
  • Patent number: 8741034
    Abstract: An object of the present invention is to provide an exhaust gas treatment system that effectively use heat recovered from an exhaust gas without any limitation in a CO2 chemical absorption equipment that requires enormous heat energy, and thus enabling reduction in running cost of the CO2 chemical absorption equipment.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: June 3, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Tomoyuki Konishi, Takanori Nakamoto, Naoki Oda, Nobuo Morimoto
  • Patent number: 8728209
    Abstract: A method for reducing energy requirements of a CO2 capture system comprises: contacting a flue gas stream with a CO2 lean absorbent stream in an absorber, thereby removing CO2 from the flue gas and providing a CO2 rich absorbent stream; heating a first portion of the CO2 rich absorbent stream using heat from the CO2 lean absorbent stream, and providing the heated first portion of the CO2 rich absorbent stream to a regenerator; providing a second portion of the CO2 rich absorbent stream to the regenerator, wherein the heated first portion is hotter than the second portion and the heated first portion is provided to the regenerator at a lower elevation in the regenerator relative to that of the second portion.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 20, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Joseph P. Naumovitz, Michael Koch
  • Patent number: 8728220
    Abstract: A CO2 recovery system according to the present invention includes: a cooling tower that uses cooling water to cool a CO2-containing exhaust gas discharged from industrial equipment such as a boiler or a gas turbine; a CO2 absorber that brings the cooled CO2-containing exhaust gas into contact with a CO2-absorbent that absorbs CO2, thereby removing the CO2 from the exhaust gas; and a first absorbent regenerator and a second absorbent regenerator that release CO2 from a CO2-absorbent that has absorbed CO2 (rich solution), thereby regenerating the CO2-absorbent. A second lean solution at the outlet of the second absorbent regenerator is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorbent regenerator.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 20, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8728210
    Abstract: An exhaust gas treatment apparatus comprises an ammonia absorption system and an ammonia conversion system. The ammonia absorption receives ammonia-containing tail gas generated by a semiconductor process, and removes dust from the tail gas, absorbs and decomposes ammonia gas from the tail gas, converts the ammonia gas into aqueous ammonia, and emits the tail gas without the dust and the ammonia to an external environment. The ammonia conversion system receives the ammonia solution from the ammonia absorption system, and converts it into gaseous ammonia, and then converts the gaseous ammonia to produce liquid ammonia by vaporization and cooling-pressurized liquefaction. After that, the liquid ammonia is purified by a purification system to formed hi-purity liquid ammonia.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: May 20, 2014
    Inventor: Hsueh Yuan Lee
  • Publication number: 20140116252
    Abstract: The proposed invention relates to a gas/liquid contacting vessel (100) for treatment of a gas stream at varying mass flow rates, said vessel comprising at least two distinct gas/liquid contacting compartments (101a, 101b) separated from each other by a substantially vertical partition (102), each compartment having a gas inlet (104a, 104b) and a liquid outlet (110a, 110b) near a bottom end thereof and a gas outlet (106a, 106b) and a liquid inlet (108a, 108b) near a top end thereof, and a mass transfer device (111a, 111b) arranged between said bottom end and top end, wherein one of said compartments is operable for gas/liquid contacting independently of another of said compartments. The proposed invention further relates to a flue gas treatment system for removal of carbon dioxide (CO2) from a flue gas using a liquid absorbent and to a power plant comprising such a gas/liquid contacting vessel or flue gas treatment system.
    Type: Application
    Filed: May 1, 2012
    Publication date: May 1, 2014
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Richard Carroni, Gian-Luigi Agostinelli, Ulrich Koss