With Heat Exchange Means Patents (Class 96/266)
  • Patent number: 8940067
    Abstract: A system and methods for separating liquids, aerosols, and solids from a flowing gas stream whereby gas flows through a helical path formed in a separator element. Partially separated gas exits the bottom of the separator element at a generally conical cavity. Clean gas exits through an inner tube that is axially aligned beneath the helical path. Separated materials exit through an annular space between the inner tube and an outer tube. Separation occurs in the helical channels which include radially diverging walls to provide an aerodynamically efficient flow, in a region of high swirl created in a generally conical cavity beneath the separator element, and in a toroidal vortex ring created in the annular space. The area and geometry of the helical path, the conical cavity, and the inner and outer tubes is optimized to provide efficient separation at varying gas flow rates and at varying liquid loads.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 27, 2015
    Assignee: Mueller Environmental Designs, Inc.
    Inventor: Fred J. Mueller
  • Patent number: 8932388
    Abstract: The present invention is related to an apparatus and a method for converting gas into fuel. The apparatus for converting gas into fuel in accordance with an embodiment of the present invention can include: a first gas processing unit discharging first fuel gas by removing hydrogen sulfide in the raw gas by spraying a solution; a second gas processing unit discharging second fuel gas by removing moisture in the first fuel gas; a third gas processing unit discharging third fuel gas by removing hydrogen sulfide remaining in the second fuel gas; and a solution reservoir supplied with the solution from at least one of the second gas processing unit and the third gas processing unit and storing the solution.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: January 13, 2015
    Assignee: Korea Electric Power Corporation
    Inventors: Jung-Keuk Park, Kwang-Beom Hur, Sang-Gyu Rhim, Jung-Bin Lee
  • Patent number: 8920548
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 30, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Patent number: 8894757
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Patent number: 8828130
    Abstract: An object of the present invention is to solve these problems and to provide a exhaust gas treatment system which prevents formation of deposits in a main duct and a flue, on and after the point where the exhaust gases converge, after the removal of CO2 and reduces labor required for maintenance such as cleaning, and thus enabling a long-term operation.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 9, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Jun Shimamura, Toshio Katsube, Shigehito Takamoto, Masaharu Kuramoto, Naoki Oda
  • Patent number: 8790453
    Abstract: The present invention relates to a gas purification system for removal of acidic gases from a gas stream. The system comprises an absorption unit arranged for receiving a gas stream and contacting it with a wash solution stream and a cooling unit in fluid communication with the absorption unit. The cooling unit receives wash solution enriched with acidic gases from a first withdrawal level of said absorption unit, cools the enriched wash solution, and provides cooled, enriched wash solution to a first reintroduction level of the absorption unit upstream of the withdrawal level. The ratio of withdrawn wash solution is 10-90% of the total wash solution stream.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 29, 2014
    Assignees: Alstom Technology Ltd, Dow Global Technologies LLC
    Inventors: Barath Baburao, Craig Norman Schubert
  • Patent number: 8518157
    Abstract: Disclosed is a device for purifying a process gas in a reflow soldering system. Said device comprises a receptacle that contains at least one packing bed. The process gas is fed to the receptacle via a gas inlet while being discharged from the receptacle after penetrating the packing bed. The inventive device further comprises an apparatus for delivering a liquid fluid to the receptacle. Secondary materials of the soldering process in the reflow soldering system can be absorbed by the liquid fluid and thus be eliminated from the process gas. Secondary materials and/or droplets and vapors of the fluid can additionally be absorbed and adsorbed on the surface of the packing.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: August 27, 2013
    Assignee: Rehm Thermal Systems GmbH
    Inventors: Hans Bell, Jürgen Felgner, Ralf Heidenreich
  • Patent number: 8518148
    Abstract: A method and system for dehumidifying flue gas from a flue gas-generating process that supplies the flue gas to a wet flue gas processor. A wet cooling tower supplies water to a wet flue gas processor to condense water from the flue gas and form a liquid mixture in the wet flue gas processor.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: August 27, 2013
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Dennis K. McDonald, Douglas J. DeVault, Paul J. Williams
  • Patent number: 8500893
    Abstract: This invention involves a marine ship flue gas scrubbing equipment and scrubbing method. The equipment includes a shell with an upper scrubbing section and a water tank in the lower section. A smoke pipe leads in exhaust gas to an area between the scrubbing section and water tank. Scrubbing seawater is injected through an inlet above the scrubbing section, and a cooler is located along the pathway of the exhaust gas. The method of scrubbing includes leading-in exhaust gas, cooling the exhaust gas, injecting scrubbing seawater, performing scrubbing operation, and discharging clean gas. Embodiments of the invention provide a highly efficient scrubbing equipment and method suitable for high-temperature exhaust gas within a limited usable space. The methods and equipment are highly effective for emission reduction, has low energy consumption, small size, and long life performance.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 6, 2013
    Inventor: Sigan Peng
  • Patent number: 8268060
    Abstract: A dehumidifier system having a dehumidifier section within which liquid desiccant absorbs moisture from air flowing therethrough and a dehumidifier section within which the desiccant is regenerated employs a heat exchanger for maintaining a relatively high temperature differential between the desiccant contained within the dehumidifier and regenerator sections. The desiccant which is conducted to either the dehumidifier section or the regenerator section is separated into multiple streams, and the multiple streams are treated differently from one another before being discharged into preselected segments of the air flow moving through the corresponding one of the dehumidifier section and the regenerator section. A control scheme in the system is capable of altering, and thereby improving, the concentration level of desiccant utilized in the system.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: September 18, 2012
    Assignee: Green Comfort Systems, Inc.
    Inventors: Larry N. Hargis, Robert W. Dibble, Stephen D. Heberle
  • Patent number: 8257476
    Abstract: A first contaminant selected from oxygen and carbon monoxide is removed from impure liquid carbon dioxide using a mass transfer separation column system which is reboiled by indirect heat exchange against crude carbon dioxide fluid, the impure liquid carbon dioxide having a greater concentration of carbon dioxide than the crude carbon dioxide fluid. The invention has particular application in the recovery of carbon dioxide from flue gas generated in an oxyfuel combustion process or waste gas from a hydrogen PSA process. Advantages include reducing the level of the first contaminant to not more than 1000 ppm.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 4, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Rodney John Allam
  • Patent number: 8147787
    Abstract: Refinery off gases are treated in a plant in two processing steps, wherein the off gases are first scrubbed in a wash column using lean oils for removal of heavy mercaptans and C5+ hydrocarbons, and wherein a hydrotreater is then used for saturating olefinic hydrocarbons and reducing sulfurous compounds. Most preferably, lean recycle oil is used for temperature control of the hydrotreater reactor(s) in configurations where the lean oil from a hydrotreater reactor outlet separator is mixed with the reactor feed to so cool the hydrotreater reactor via evaporation.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 3, 2012
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Robert Henderson
  • Publication number: 20110126715
    Abstract: In order to improve increase of carbon dioxide gas recovery efficiency and saving costs and then to contribute to global environmental protection, in a carbon dioxide gas absorption chamber of a carbon dioxide gas recovery apparatus whose cross-section is square and in which horizontal gas flow passage is formed by providing an exhaust gas introducing opening in one side and an exhaust gas discharging opening in an opposite side thereof, a simple constitution without a support plate or a re-distributor is formed by using specific filler, in addition, a packed bed with a large surface area and a high efficiency can be formed, a negative effect due to reaction heat is lost by providing heat exchanger devices in this packed bed, absorbing ability of the carbon dioxide gas is increased by circulating the absorbing solution in the divided packed bed a plurality of times in series, corrosion resistance of the device is increased by downsizing the packed bed and the device for distributing carbon dioxide gas absorbi
    Type: Application
    Filed: July 27, 2010
    Publication date: June 2, 2011
    Inventor: Takeshi KIMURA
  • Publication number: 20110120308
    Abstract: A system for removing carbon dioxide from a flue gas stream is provided, the system comprising an absorber vessel configured to receive a flue gas stream, the absorber vessel comprising a first absorption stage configured to receive the flue gas stream and contact it with a first ionic solution, a second absorption stage configured to receive flue gas which has passed the first absorption stage and contact it with a second ionic solution, a first sump vessel, and a second sump vessel.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: ALSTOM Technology Ltd.
    Inventors: Sanjay K. Dube, Rameshawar S. Hiwale, Peter U. Koss, David J. Muraskin
  • Publication number: 20110120309
    Abstract: The present invention relates processes of removal of acidic gases from a gas stream, comprising the steps of a) contacting a wash solution stream with said gas stream containing acidic gases to be removed to allow absorption of the acidic gases into the wash solution stream; b) withdrawing wash solution enriched with acidic gases from said wash solution stream at a first withdrawal level; c) cooling said withdrawn wash solution; and d) reintroducing said cooled wash solution to the wash solution stream at a first reintroduction level to form a mixed wash solution stream, said first reintroduction level being upstream of said first withdrawal level. The present invention also relates to systems for removal of acidic gases from a gas stream.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicants: ALSTOM TECHNOLOGY LTD, THE DOW CHEMICAL COMPANY
    Inventors: Barath Baburao, Craig Schubert
  • Patent number: 7942951
    Abstract: A low-maintenance scrubber inlet device is provided for delivering effluent gases to gas scrubbers. The scrubber inlet device may comprise an interior volume configured to receive effluent gases and direct the effluent gases into the scrubber while maintaining the temperature of the effluent gases. In some instances, a heated gas is introduced to maintain the effluent gas temperature. The scrubber interface device is configured to deliver the effluent gas stream from the inlet manifold to the gas scrubbing system, and to have a very low susceptibility to clogging.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 17, 2011
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Patent number: 7942387
    Abstract: A system and method for managing water content in a fluid include a collection chamber for collecting water from the fluid with a desiccant, and a regeneration chamber for collecting water from the desiccant and transferring it to a second fluid. An evaporator cools the desiccant entering the collection chamber, and a condenser heats the desiccant entering the regeneration chamber. Diluted desiccant from the collection chamber is exchanged with concentrated desiccant from the regeneration chamber in such a way as to efficiently control the transfer of both mass and heat between the chambers. In one embodiment, mass is not exchanged until one or both of the desiccant levels in the chambers exceeds a predetermined level. Heat is transferred between the two desiccant flows as they are transferred between the chambers. This increases efficiency and reduces the energy input required for the evaporator and the condenser.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: May 17, 2011
    Assignee: DUCool Ltd.
    Inventor: Dan Forkosh
  • Patent number: 7875103
    Abstract: Systems and related methods for separating liquids and particulate from a flowing gas stream include a separation vessel containing a liquid injector, an impingement separator or a helical impingement separator, and a waste liquid recovery tank. Separated liquid and particulate collect in a sump, flow into a recovery tank, and may be filtered in a side stream duplex filter circuit for return into the recovery tank and re-injection into the separation vessel. The helical separator element has outwardly extending helical fins that form helical gas channels. The interior of the channels forms a rounded radius and opposing vertical edges of the channels include chamfers. The lower end of the helical separator element forms a concave, generally conical surface. The helical fins form a first impingement separator and the chamfers form a second vane-type impingement separator, such that particulate and liquids may be removed from the gas stream at varying flow rates and liquid/particulate densities.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 25, 2011
    Assignee: Mueller Environmental Designs, Inc.
    Inventor: Fred Mueller
  • Publication number: 20110015456
    Abstract: A gas treatment system for hydrocarbon upgradation comprising a water flooded screw type compressor to receive and discharge water and gas to be treated, a scrubber to receive a gas discharged from the compressors and scrubbing water, a stripper/flasher to receive water and gas discharged from the scrubber and recycle the water for use by one or both compressor and scrubber and a recovery system for the gas from scrubber.
    Type: Application
    Filed: February 19, 2009
    Publication date: January 20, 2011
    Inventor: John Stephen Broadbent
  • Patent number: 7850761
    Abstract: There is provided an apparatus for highly purifying nitric oxide by removing impurities included in nitric oxide, which comprises: a number of dehumidifiers connected to one another in a series, to remove water and carbon dioxide from the nitric oxide; a vaporizing and liquefying unit for respectively separating impurities into a gaseous state and a liquid state by cooling the nitric oxide which passed through the dehumidifiers at sub-zero temperatures; a storage tank for storing highly purified nitric oxide separated by the vaporizing and liquefying unit; an exhaust pump for discharging gaseous impurities, separated by the vaporizing and liquefying unit, to a scrubber; an outlet for discharging liquid impurities, separated by the vaporizing and liquefying unit, to the scrubber; and the scrubber 50 for purifying the gaseous and liquid impurities.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: December 14, 2010
    Assignee: Wonikmurtrealize Co., Ltd.
    Inventors: Jun-Youl Lee, Bong-Soo Seo
  • Patent number: 7771514
    Abstract: A low-maintenance scrubber inlet device is provided for delivering effluent gases to gas scrubbers. The scrubber inlet device comprises a scrubber interface device in fluid communication with an inlet manifold. The inlet manifold is configured to receive effluent gases and direct the effluent gases into the scrubber interface device while maintaining the temperature of the effluent gases. In some instances, a heated gas is introduced into the inlet manifold to maintain the effluent gas temperature. The scrubber interface device is configured to deliver the effluent gas stream from the inlet manifold to the gas scrubbing system, and to have a very low susceptibility to clogging.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: August 10, 2010
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20100139489
    Abstract: The invention relates to a process for purifying crude synthesis gas (1) containing metal carbonyls, in which undesirable substances such as sulphur components and/or carbon dioxide (CO2) and/or hydrocyanic acid (HCN) are scrubbed out by scrubbing with a physically acting scrubbing medium in at least one process step (main scrub (H)), and also an apparatus for carrying out the process. The crude synthesis gas (1) before introduction into the main scrub (H) is subjected to a gas scrub (carbonyl scrub (C)) in which a partial amount (4) of the laden scrubbing medium (2) taken off from the main scrub is used as scrubbing medium, with the partial amount (4) being chosen so that the metal carbonyls are (selectively) separated off from the crude synthesis gas (1) in the carbonyl scrub (C) largely independently of the other gas components.
    Type: Application
    Filed: November 6, 2007
    Publication date: June 10, 2010
    Inventor: Ulvi Kerestecioglu
  • Patent number: 7601208
    Abstract: A water production unit is provided that uses liquid desiccant and vehicle exhaust for extracting water from air.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: October 13, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Stephen Tongue
  • Publication number: 20090095162
    Abstract: A dehumidifier system having a dehumidifier section within which liquid desiccant absorbs moisture from air flowing therethrough and a dehumidifier section within which the desiccant is regenerated employs a heat exchanger for maintaining a relatively high temperature differential between the desiccant contained within the dehumidifier and regenerator sections. The desiccant which is conducted to either the dehumidifier section or the regenerator section is separated into multiple streams, and the multiple streams are treated differently from one another before being discharged into preselected segments of the air flow moving through the corresponding one of the dehumidifier section and the regenerator section. A control scheme in the system is capable of altering, and thereby improving, the concentration level of desiccant utilized in the system.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Inventors: Larry N. Hargis, Robert W. Dibble, Stephen D. Heberle
  • Publication number: 20080307968
    Abstract: An apparatus and method for absorbing and recovering carbon dioxide from flue gas using ammonia water as an absorbent, including an absorption column and a circulation cooler connected to the absorption column so that a high-temperature absorbent is recovered from the absorption column, cooled to a preset temperature, and then supplied again into the absorption column, in order to dissipate absorptive heat generated when carbon dioxide is absorbed from the flue gas.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 18, 2008
    Applicants: POSCO, Research Institute of Industrial Science and Technology
    Inventors: Ki Joon Kang, Young Bong Lee, Kwang Hyun Kim, Je Young Kim
  • Patent number: 7309062
    Abstract: A dehumidification and energy recovery device includes a casing defining an interior that is divided into two vertically stacked sections, a channel extending vertically between the sections and forming upper and lower openings, absorption devices arranged inside the channel corresponding to the sections respectively, and a tank arranged below the lower opening of the channel and containing a liquid that is driven by a pump to a position above the upper opening of the channel to drop onto and flow through the absorption devices. Intake airflow and exhaust airflow respectively pass through the sections, contacting the liquid flowing through the channel in a cross-flow fashion, whereby exchange of humidity and heat is performed between the airflows and the liquid to effect dehumidification and energy recovery with a simple structure and low costs.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: December 18, 2007
    Inventor: Wen-Feng Lin
  • Patent number: 6852147
    Abstract: A gas reduction apparatus 12 is provided for reducing the amount of gas 15 emitted from a cooling tower 10 into the atmosphere. The apparatus 12 in accordance with the principles of this invention includes a first air conduit 13 which collects the gas 15 and chemical particles therein released from the cooling tower 10 before they are released into the atmosphere. The conduit 13 then provides a path for the gas 15 and chemical particles formed therein to flow to a liquefier 16. The liquefier 16 converts the gas 15 to a liquid 17. A filter 32 is coupled adjacent the liquefier 16 to separate the chemical particles released into the liquefier from the liquid 17 formed in the liquefier. The liquid 17 is then directed through an outlet conduit 34 to a cooling tower reservoir 36 where it finds itself back into the cooling tower 10.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: February 8, 2005
    Inventor: Larry B. Tinguee, Jr.
  • Publication number: 20040118280
    Abstract: A gas reduction apparatus 12 is provided for reducing the amount of gas 15 emitted from a cooling tower 10 into the atmosphere. The apparatus 12 in accordance with the principles of this invention includes a first air conduit 13 which collects the gas 15 and chemical particles therein released from the cooling tower 10 before they are released into the atmosphere. The conduit 13 then provides a path for the gas 15 and chemical particles formed therein to flow to a liquefier 16. The liquefier 16 converts the gas 15 to a liquid 17. A filter 32 is coupled adjacent the liquefier 16 to separate the chemical particles released into the liquefier from the liquid 17 formed in the liquefier. The liquid 17 is then directed through an outlet conduit 34 to a cooling tower reservoir 36 where it finds itself back into the cooling tower 10.
    Type: Application
    Filed: April 10, 2002
    Publication date: June 24, 2004
    Inventor: Larry B. Tinguee
  • Patent number: 6746516
    Abstract: An air treatment system including an exhaust including an exhaust annulus defined by an inner exhaust wall, an outer exhaust wall circumscribing the inner wall, and a pressurized annulus between the inner and outer walls, and at least one condenser suspended within the exhaust annulus, where the at least one condenser includes a cooling fluid therein.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: June 8, 2004
    Inventor: James A. Titmas
  • Patent number: 6743279
    Abstract: An air handling unit having a unique air treatment device, and a method for retrofitting existing air handling units to include the air treatment device. The air handling unit includes a casing defining a space for conditioning air, and forming an inlet and an outlet; a cooling coil supplied by a central chiller system and disposed inside the casing; a sump located below the cooling coil; and a supply air blower for drawing air into the casing, and forcing air through the cooling coil. The air handling unit further includes a spray header secured inside the casing, adjacent the cooling coil; and a pumping system for delivering liquid solution from the sump and pumping the solution onto the cooling coil and the solution flows downward over the cooling coil and into the sump below, and the solution treats the air flowing through the cooling coil. In a preferred embodiment, the liquid solution is an anti-bacteria solution, and the solution kills bacteria in the air forced through the cooling coil structure.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 1, 2004
    Assignee: Airborne Contaminant Systems, LLC
    Inventor: Edward Cataldo
  • Patent number: 6726750
    Abstract: An apparatus for efficiently removing VOC from a plurality of remotely located sources of VOC contaminated gas streams includes a plurality of liquid absorbers, each located near and communicating with a source of a VOC contaminated gas stream, the liquid absorbers associating the VOC with a scrubbing liquid. A gas conduit is associated with each liquid absorber to allow for the recycling of properly conditioned gas to the VOC source. A conduit is connected to each liquid absorber for conveying VOC laden scrubbing liquid from the liquid absorber to a separating apparatus in fluid communication with each of the conduits. A conduit recycles the scrubbing liquid from the separating apparatus to at least one of the plurality of liquid absorbers. A heat exchanger associated with the scrubbing liquid after separation transfers heat to the scrubbing liquid prior to separation, or to an HVAC system, or to the scrubbing liquid prior to the liquid absorber.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: April 27, 2004
    Assignee: CH2M Hill, Inc.
    Inventors: Mitchell H. Lindsay, Moha Shah
  • Patent number: 6572689
    Abstract: An absorption apparatus for an absorption chiller includes a series of eliminator blades situated between a vaporizing chamber (e.g., a generator or an evaporator) and a devaporizing chamber (e.g., a condenser or an absorber). Each of the blades includes an upstream leg, a downstream leg and a deflection tab. With respect to the direction of vapor flowing from the vaporizing chamber to the devaporizing chamber, the upstream leg is at an upward incline and the downstream leg is at a downward incline. The deflection tab extends out over the downstream leg to create a concavity that helps prevent liquid in the devaporizing chamber from splashing back across the eliminator blade. In some embodiments, a tube support plate includes a series of holes for not only supporting the tube bundles of two heat exchangers but also for supporting the eliminator blades.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: June 3, 2003
    Assignee: American Standard International Inc.
    Inventors: Ronald M. Cosby, II, Jeffrey D. Harms, Stephen A. Kujak, Luan K. Nguyen, Thomas G. Travers
  • Patent number: 6551379
    Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 22, 2003
    Inventor: Rodney T. Heath
  • Patent number: 6551382
    Abstract: Effluent gas cleaning process and apparatus for effectively removing particulates in the 0.01 micron to 0.1 micron diameter range, and for removing water-soluble gaseous contaminants, by first bringing the effluent to a relatively high temperature and humidity in a first stage, and then exposing the effluent to copious quantities of small cool water droplets in a second stage, for particular combinations of: the first stage relative humidity; the first-to-second stage droplet temperature difference; the stage two water droplet mass flow rate vs. effluent flow rate; the second stage droplet size; the travel time of the effluent during exposure to the cool droplets; and the electrical charge state of the second stage water droplets and opposite charge state of the particulates. The combinations enhance effluent cleaning through the combined operation of up to four distinct physical processes which can be made to occur during the second stage.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: April 22, 2003
    Inventor: Clyde N. Richards
  • Patent number: 6485547
    Abstract: An exhaust gas cooling system includes, an exhaust gas-processing tower provided at a lower portion with an inlet port for an exhaust gas containing moisture and also provided at an upper interior space with a spray member, a circulating passageway for circulating exhaust gas-processing water from the bottom of the exhaust gas-processing tower to the spray member, a heat exchanger provided at a midway of the circulating passageway for, cooling the exhaust gas-processing water, a cooling tower for generating cooling water by taking advantage of the evaporation heat of water, thereby allowing the cooling water to circulate through the heat exchanger, and a water supply passageway for supplying the exhaust gas-processing water passing through circulating passageway to the cooling tower as part of-make-up water.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 26, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 6447585
    Abstract: In the method and system of the instant invention, volatile organic compounds (VOCs) liberated in the course of solvent-based painting of a workpiece, are recovered. The atmosphere within a closed spray-booth is maintained at a fixed humidity such that vaporized water, supplied in the form of steam or nebulized water vapor, acts as a carrier for VOCs liberated in the course of spray painting or heat curing of a workpiece. The VOCs may be recovered continuously, including during the spray-painting or heat curing of the workpiece. The VOC laden, humidified air is circulated through a condenser such that VOCs dissolved in the water vapor condense and are directed to a recovery means. The water and solvent are separated, recovered and purified for re-use or placed in an appropriate container for disposal, thereby eliminating the usual practice of expelling VOC laden air into the atmosphere.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: September 10, 2002
    Inventors: LeRoy H. Buchholz, Jr., Loretta P. Buchholz
  • Patent number: 6394174
    Abstract: The present invention generally relates to a system and a method for reclaiming process water in a manufacturing plant and more particularly, relates to a system and a method for reclaiming process water from a cooling tower exhaust gas which contains at least 80% relative humidity by utilizing a heat exchanger equipped with cooling elements that are cooled by a flow of exhaust gas formed by a general exhaust and a scrubber exhaust from a semiconductor fabrication facility.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: May 28, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventor: Yi-Jang Hsieh
  • Publication number: 20020046652
    Abstract: An apparatus for efficiently removing VOC from a plurality of remotely located sources of VOC contaminated gas streams includes a plurality of liquid absorbers, each located near and communicating with a source of a VOC contaminated gas stream, the liquid absorbers associating the VOC with a scrubbing liquid. A gas conduit is associated with each liquid absorber to allow for the recycling of properly conditioned gas to the VOC source. A conduit is connected to each liquid absorber for conveying VOC laden scrubbing liquid from the liquid absorber to a separating apparatus in fluid communication with each of the conduits. A conduit recycles the scrubbing liquid from the separating apparatus to at least one of the plurality of liquid absorbers. A heat exchanger associated with the scrubbing liquid after separation transfers heat to the scrubbing liquid prior to separation, or to an HVAC system, or to the scrubbing liquid prior to the liquid absorber.
    Type: Application
    Filed: December 13, 2001
    Publication date: April 25, 2002
    Applicant: CH2M Hill, Inc.
    Inventors: Mitchell H. Lindsay, Moha Shah
  • Patent number: 6372023
    Abstract: There is disclosed a method of separating and recovering carbon dioxide from combustion exhausted gas, which method includes: bringing the combustion exhausted gas in contact with water, under a pressure-increased condition, to form carbon dioxide hydrate; and thus separating and recovering carbon dioxide contained in the combustion exhausted gas. According to the method, CO2 of high purity can be separated and recovered from the combustion exhausted gas at low cost and with low energy consumption. There is also disclosed an apparatus for separation and recovery of CO2 which apparatus is employed in the method.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: April 16, 2002
    Assignees: Secretary of Agency of Industrial Science and Technology
    Inventors: Fumio Kiyono, Takayuki Saito
  • Patent number: 6364933
    Abstract: Apparatus for use with a natural gas dehydrator wherein a portion of the wet glycol in an emissions separator is pumped under pressure as circulating wet glycol which may be used as a coolant for effluent removed from a reboiler and/or a power source for an eductor to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluent, comprising at least liquid water, liquid hydrocarbons and uncondensed vapors, moves into the first chamber wherein the liquid water and/or the liquid hydrocarbons are separated from the uncondensed vapors. At least, the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are compressed and combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. In some instances, the liquid hydrocarbons are transferred to a third chamber and removed therefrom.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: April 2, 2002
    Inventor: Rodney T. Heath
  • Patent number: 6348088
    Abstract: A system and a method for recovering energy from a low temperature factory exhaust gas are disclosed. In the system, a heat exchanger is added between a wet scrubber and a cooling tower such that a low temperature scrubber exhaust gas can be utilized to decrease the temperature of a heat transfer medium used in the cooling tower. The lower temperature cooling tower water therefore increases the efficiency of cooling in a chiller connected to the cooling tower. Furthermore, the increased scrubber exhaust gas temperature reduces its opacity to fulfill requirement of environmental protection regulations. The lower water temperature in the cooling tower further reduces water evaporation rate and therefore reduces water consumption due to evaporation.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 19, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventor: Chin-Hsien Chung
  • Publication number: 20010029844
    Abstract: A system and a method for recovering energy from a low temperature factory exhaust gas are disclosed. In the system, a heat exchanger is added between a wet scrubber and a cooling tower such that a low temperature scrubber exhaust gas can be utilized to decrease the temperature of a heat transfer medium used in the cooling tower. The lower temperature cooling tower water therefore increases the efficiency of cooling in a chiller connected to the cooling tower. Furthermore, the increased scrubber exhaust gas temperature reduces its opacity to fulfill requirement of environmental protection regulations. The lower water temperature in the cooling tower further reduces water evaporation rate and therefore reduces water consumption due to evaporation.
    Type: Application
    Filed: May 11, 2001
    Publication date: October 18, 2001
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chin-Hsien Chung
  • Patent number: 6156102
    Abstract: A process of separating water from ambient air involves a liquid desiccant to first withdraw water from air and treatment of the liquid desiccant to produce water and regenerated desiccant. Water lean air is released to the atmosphere. Heat generated in the process is recycled. The drying capacity, or volume of water produced, of the system for a given energy input is favored over the production of dried air.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: December 5, 2000
    Assignee: Fantom Technologies Inc.
    Inventors: Wayne Ernest Conrad, Helmut Gerhard Conrad
  • Patent number: 6070655
    Abstract: A heat exchanger, for use in particular in connection with the process outlets at paper, pulp and board mills, including substantially parallel tubes or equivalent arranged in a duct. An air flow that delivers heat passes through the tubes and an air flow that receives heat passes through gaps between the tubes in accordance with the cross-flow principle. The heat faces of the tubes are made larger at the side of the flow that receives heat by means of ribs, lamellae or equivalent, and an air that is moist, saturated, or near its saturation curve is used as the air flow that delivers heat in the heat exchanger.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: June 6, 2000
    Assignee: Valmet Corporation
    Inventor: Pertti Heikkila
  • Patent number: 6036755
    Abstract: A water filtering type air cleaning unit includes a housing having an upper side defining an air draining conduit and a lower side defining an air inlet conduit, a water permeable air filtering device mounted in the air draining conduit and including a plurality of stacked air filtering pipes, a water permeable disk mounted on a top edge of the water permeable air filtering device, a cold water heat exchanging device mounted in the air inlet conduit and including a cold water inlet and a cold water outlet connected with the water permeable disk, a water pump mounted in the air inlet conduit and connected with the cold water inlet, a water tank mounted in the air inlet conduit and connected with the water permeable air filtering device and the water pump, a natural convention device mounted in the housing and including a plurality of closed circulating pipes each filled with a refrigerant, and a vent mounted in the housing and including an upper side formed with an air outlet and an air inlet.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: March 14, 2000
    Assignee: Yiue Feng Enterprise Co., Ltd.
    Inventor: Kuo-Liang Weng
  • Patent number: 6015451
    Abstract: Apparatus for recovering volatile organic compounds (VOC) from VOC/inert gas mixtures leaving tanker holds during crude oil loading includes an absorption column 12 in which incoming VOC is absorbed into cold kerosene, a portion of the VOC rich kerosene leaving the absorption column being cooled in a cooler 88 and returned to the absorption column to contact incoming VOC/inert gas mixture and absorb further VOC. The remainder of the rich kerosene leaving the absorption column 12 passes to a buffer tank 34 where it is held. It is then pumped to an elevated pressure distillation (stripper) column 46, where VOC is separated from the kerosene by conventional rectification. VOC vapor leaving the top of the distillation column is condensed in condenser 72 and held in the VOC reflux tank 76. Liquid VOC from the reflux tank is passed to a crude oil pipeline 82; a portion of the liquid VOC from the reflux tank enters the top of the distillation column to act as reflux.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: January 18, 2000
    Assignee: Fluor Corporation
    Inventors: Thomas B. Anderson, Elliott Drucker, John Dennis Robinson
  • Patent number: 5907924
    Abstract: A method of treating gas containing water in order to remove at least part of the water from the gas, including feeding the natural gas to be treated by a first line, with a liquid fraction containing at least an aqueous phase is fed via a second line in the presence of a solvent into a contact zone, so as to bring the gas into direct contact with the liquid fraction over at least a portion of the contact zone. The solvent is a non-hydrocarbon compound other than water, and simultaneously, the gas is cooled in the presence of the solvent in order to condense at least one liquid phase consisting essentially of water in a mixture with the solvent.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: June 1, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Claude Collin, Joseph Larue, Alexandre Rojey
  • Patent number: 5897690
    Abstract: A vapor recovery system for hydrocarbon storage tanks captures VOCs (volatile organic compounds) which would otherwise escape to the atmosphere, thereby reducing pollutant emissions to the environment. The system includes a wash chamber, where the VOC vapors are sprayed with water at or below ambient temperature to condense the vapors from the air. The liquid hydrocarbons and water then drain downwardly into an accumulator. Due to the immiscibility of water and hydrocarbon fuels, particularly those having high aromatic content such as gasoline, the liquid VOCs are drained off and returned to the storage tank while the water is recycled for further spray cooling of vapors. The spray chamber is also surrounded by a coolant jacket, through which a coolant (water or other suitable liquid) below ambient temperature is circulated. This further reduces the temperature in the spray chamber, to condense additional VOCs and water from the air, as well as cooling the spray water.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: April 27, 1999
    Inventor: Robert L. McGrew
  • Patent number: RE39944
    Abstract: A natural gas dehydrator wherein a portion of the wet glycol from the absorber is pumped under pressure as circulating wet glycol which is used as a coolant for effluents removed from a reboiler and a power source for an educator to form a vacuum in a first chamber of a liquid water removal separator apparatus. The cooled effluents, comprising liquid water, liquid hydrocarbons and uncondensed vapors, move in to the first chamber wherein the liquid water is separated therefrom. The liquid hydrocarbons and the uncondensed vapors are removed from the first chamber and move into the eductor wherein they are combined into the circulating wet glycol. The separated liquid water is transferred to a second chamber of the liquid water removal separator apparatus and then removed therefrom. Also, gases from gas emitting level control apparatus in the natural gas dehydrator are collected and fed into the first chamber.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: December 25, 2007
    Inventor: Rodney T. Heath