Near-field Probe Patents (Class 977/862)
  • Patent number: 8993448
    Abstract: A method of forming a plurality of nanotubes is disclosed. Particularly, a substrate may be provided and a plurality of recesses may be formed therein. Further, a plurality of nanotubes may be formed generally within each of the plurality of recesses and the plurality of nanotubes may be substantially surrounded with a supporting material. Additionally, at least some of the plurality of nanotubes may be selectively shortened and at least a portion of the at least some of the plurality of nanotubes may be functionalized. Methods for forming semiconductor structures intermediate structures, and semiconductor devices are disclosed. An intermediate structure, intermediate semiconductor structure, and a system including nanotube structures are also disclosed.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Terry L. Gilton
  • Patent number: 8677931
    Abstract: A pattern having exceptionally small features is printed on a partially fabricated integrated circuit during integrated circuit fabrication. The pattern is printed using an array of probes, each probe having: 1) a photocatalytic nanodot at its tip; and 2) an individually controlled light source. The surface of the partially fabricated integrated circuit comprises a photochemically active species. The active species undergoes a chemical change when contacted by the nanodot, when the nanodot is illuminated by light. To print a pattern, each probe raster-scans its associated nanodot across the surface of the partially fabricated integrated circuit. When the nanodot reaches a desired location, the nanodot is illuminated by the light source, catalyzing a change in the reactive species and, thus, printing at that location. Subsequently, reacted or unreacted species are selectively removed, thereby forming a mask pattern over the partially fabricated integrated circuit.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: March 25, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 8196217
    Abstract: Transmission efficiency and/or spatial resolution provided by resonant apertures can be enhanced by disposing a tip on part of the screen that extends laterally into the aperture. For example, a tip disposed on the ridge of a C-shaped aperture can dramatically improve performance. A spatial resolution of ?/50 has been experimentally demonstrated with this approach. The combination of high spatial resolution and high transmission efficiency provided by this approach enables many applications, such as near field optical probes for near field scanning optical microscopy (NSOM). Another application is high resolution electron sources, where an photoelectron emitter can be disposed at or near a tip+aperture structure such that the high resolution optical near-field provides a correspondingly high resolution electron source.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: June 5, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yao-Te Cheng, Yin Yuen, Paul C. Hansen, Yuzuru Takashima, Lambertus Hesselink
  • Patent number: 7744963
    Abstract: In one aspect, a method of nanolithography is provided, the method comprising providing a substrate; providing a scanning probe microscope tip; coating the tip with a deposition compound; and subjecting said coated tip to a driving force to deliver said deposition compound to said substrate so as to produce a desired pattern. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Seunghun Hong, Vinayak P. Dravid
  • Patent number: 7707647
    Abstract: Provided are a probe for surface enhanced vibrational spectroscopic analysis which has excellent detection sensitivity to laser light having an intensity level at which a sample is not damaged and which has a long life, and a method of manufacturing the probe. The probe for surface enhanced vibrational spectroscopic analysis is formed on a cantilever. A plurality of metal fine particles are dispersed in the probe. The plurality of metal fine particles are exposed on the surface of the probe.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 27, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kaoru Konakahara
  • Patent number: 7702195
    Abstract: When light is made incident to an optical waveguide path 14 formed through a main body 12 composed of silver (Ag) that is a plasmon active medium, surface plasmon is generated on a definition face 55 of the optical waveguide path 14 (including a fine aperture 16). Thus, the intensity of the light propagating in the optical waveguide path 14 is strengthened as the light propagates toward the fine aperture 16. In addition, a distal end 51 of a first protrusive piece 13a is more protrusive as compared with a distal end 52 of a second protrusive piece 13b. Thus, in a distal end part of a projection 13, the light is focused in the vicinity of the first protrusive piece 13a based on an intensity distribution of an electric field at the distal end part. Thus, the light having seeped out from the fine aperture 16 is restricted from spreading in a polarizing direction.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: April 20, 2010
    Assignee: Gifu Univeristy
    Inventors: Kazuo Tanaka, Masahiro Tanaka
  • Patent number: 7621964
    Abstract: An improved near-field scanning optical microscope probe is disclosed. The near-field scanning optical microscope probe includes a probe body and two electrodes extending from the probe body to form a probe tip. In addition, a light-emitting diode is disposed between the two electrodes at the probe tip to act as a light source for the near-field scanning optical microscope probe.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: November 24, 2009
    Assignee: The Board of Regents, University of Texas System
    Inventors: Kazunori Hoshino, Xiaojing Zhang
  • Patent number: 7612323
    Abstract: To obtain an optical element for generating near-field light which can accurately detect positions of a plurality of minute structures formed on a metallic thin film provided to a condensing surface, and a method of adjusting an optical spot position of the optical element. The metallic thin film is formed on the condensing surface of the optical element that condenses incident light so as to generate near-field light smaller than an condensing spot B near a condensing point, and a plurality of openings (minute structure) for generating the near-field light are formed into a matrix matter on the metallic thin film, and position detecting structures are formed on positions that partitions the openings is formed. Scanning in X and Y directions is carried out by a light beam, and its reflected light is detected so that the positions of the openings are detected.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: November 3, 2009
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Masahiro Okitsu, Kazuyuki Ogura, Kenji Konno, Hiroshi Hatano
  • Patent number: 7591858
    Abstract: A mirror optic (10) is provided for near-field optical measurement of a specimen (1), wherein the mirror optic (10) has a reflector (11) with the shape of a paraboloid with a paraboloid axis (12) and a focal point (13), which can be illuminated along a first illumination beam path (I), whereby the reflector 11 has at least one edge recess (14) in such a way that the focal point (13) can be illuminated along a second illumination beam path (II) which deviates from the first illumination beam path (I). A near-field microscope with such a mirror optic is also provided.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: September 22, 2009
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Fritz Keilmann, Rainer Hillenbrand
  • Patent number: 7507957
    Abstract: A problem to be resolved by the invention resides in providing a multifunction analyzing apparatus for detecting a shape with high resolution and physical property information capable of not only successively reading a base arrangement from end to end but also specifying a position hybridized by known RNA with regard to a single piece of DNA elongated in one direction on a board. A microscope system of the invention is provided with a fluorescence microscope, a scanning near field microscope and a scanning probe microscope as a detecting system, the microscopes are fixed to a switching mechanism and can be moved to a position at which the various microscopes can observe the same portion of a sample by switching operation of the mechanism. The microscope system of the invention is provided with a function capable of directly detecting a shape and physical property information of one piece of DNA by the scanning probe microscope by multifunction scanning.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 24, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masamichi Fujihira, Masatoshi Yasutake, Tatsuaki Ataka
  • Patent number: 7423265
    Abstract: Near-field electromagnetic devices having an opaque metallic screen with a fractal iterate aperture are provided. More specifically, the aperture is obtained by application of a self-similar replacement rule to an initial shape two or more times. Alternatively, the aperture can be obtained by application of a self-similar replacement rule one or more times to an initial C-shape. Such apertures tend to have multiple transmission resonances due to their multiple length scales. Fractal iterate apertures can provide enhanced transmission and improved spatial resolution simultaneously. Enormous improvement in transmission efficiency is possible. In one example, a checkerboard fractal iterate aperture provides 1011 more intensity gain than a square aperture having the same spatial resolution. Efficient transmission for fractal iterate apertures having spatial resolution of ?/20 is also shown.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: September 9, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Joseph A. Matteo, Lambertus Hesselink, Yin Yuen
  • Patent number: 7420106
    Abstract: Characterizing dielectric surfaces by detecting electron tunneling. An apparatus includes an atomic force probe. A mechanical actuator is connected to the atomic force probe. A mechanical modulator is connected to the mechanical actuator. The mechanical modulator modulates the mechanical actuator and the atomic force probe at the resonant frequency of the atomic force probe. An electrical modulator is connected to the atomic force probe. A feedback sensing circuit is connected to the mechanical modulator to detect movement of the atomic force probe and provide information about the movement of the atomic force probe to the mechanical modulator allowing the mechanical modulator to modulate the atomic force probe at the resonant frequency of the atomic force probe as the resonant frequency of the atomic force probe changes. An FM detector is connected to the feedback circuit detects changes in the resonant frequency of the atomic force probe.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 2, 2008
    Assignee: The University of Utah Research Foundation
    Inventors: Clayton C. Williams, Ezra B. Bussmann
  • Patent number: 7402736
    Abstract: A probe of a scanning probe microscope having a sharp tip and an increased electric characteristic by fabricating a planar type of field effect transistor and manufacturing a conductive carbon nanotube on the planar type field effect transistor. To achieve this, the present invention provides a method for fabricating a probe having a field effect transistor channel structure including fabricating a field effect transistor, making preparations for growing a carbon nanotube at a top portion of a gate electrode of the field effect transistor, and generating the carbon nanotube at the top portion of the gate electrode of the field effect transistor.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: July 22, 2008
    Assignee: POSTECH Foundation
    Inventors: Wonkyu Moon, Geunbae Lim, Sang Hoon Lee
  • Patent number: 7372013
    Abstract: A near-field scanning microscopy probe and a method for doing the same. A metal plasmon or dielectric waveguide is connected to a deformable material and coupled to a dielectric waveguide on a chip. The probe pops up out of the plane of the chip. The probe can be easily integrated with standard on-chip optical components.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: May 13, 2008
    Assignee: California Institute of Technology
    Inventors: Tom Baehr-Jones, Michael J. Hochberg, Axel Scherer
  • Patent number: 7297933
    Abstract: A probe which generates near-field light from an aperture at the tip is provided. The tip is covered with a lightproof member, at least the interior of the lightproof member is in the shape of a cone having a plane-shaped top, and the aperture is provided in the top plane.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 20, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomohiro Yamada, Natsuhiko Mizutani
  • Patent number: 7250598
    Abstract: A plasmon enhanced near-field optical probe has an optical coupler with an end face and a metal coating forming at least one plasmon enhancement structure. An extension provides probe-to-sample separation feedback. A microscope cantilever has a lever arm with an aperture, a tip to provide tip-to-sample separation feedback, and a plasmon enhancement structure. An air bearing slider apparatus has a base, air bearing slider pads, and a metal film forming a plasmon enhancement structure about an aperture. A plasmon enhanced optical probe end cap has a socket with an entry aperture for an optical fiber and an exit aperture with a plasmon enhanced transmission structure. A positioning subsystem has a piezoelectric member that adjusts a length of the positioning subsystem, and a quadranted piezo device that adjusts a position of the positioning subsystem.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: July 31, 2007
    Inventors: Russell E. Hollingsworth, Reuben T. Collins
  • Patent number: 7241987
    Abstract: In a manufacture of a probe for a scattering type near-field microscope, there is provided a method of coating, with a high reproducibility, uniform metal particles efficiently inducing a surface enhanced Raman scattering. It has been adapted such that, in the probe for the scattering type near-field microscope, one part or all of the probe due to an interaction of at least an evanescent field is coated by metal particles which don't mutually adhere and have a particle diameter of 10 nm or larger and 50 nm or smaller in radius of curvature.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: July 10, 2007
    Assignees: Riken, SII NanoTechnology Inc.
    Inventors: Yuika Saito, Takashi Murakami, Satoshi Kawata, Yasushi Inoue, Kazuhito Tsukagoshi, Masato Iyoki