For Carrying Or Transporting Patents (Class 977/962)
  • Publication number: 20120018382
    Abstract: Disclosed are magnetic nanoparticles and methods of using magnetic nanoparticles for selectively removing biologics, small molecules, analytes, ions, or other molecules of interest from liquids.
    Type: Application
    Filed: April 25, 2011
    Publication date: January 26, 2012
    Applicant: ADVANTAGEOUS SYSTEMS, LLC
    Inventor: Adam L. Stein
  • Publication number: 20120018666
    Abstract: The exemplary embodiments of the present invention provide a method and system for aligning graphite nanofibers in a thermal interface material to enhance the thermal interface material performance. The method includes preparing the graphite nanofibers in a herringbone configuration, and dispersing the graphite nanofibers in the herringbone configuration into the thermal interface material. The method further includes applying a magnetic field of sufficient intensity to align the graphite nanofibers in the thermal interface material. The system includes the graphite nanofibers configured in a herringbone configuration and a means for dispersing the graphite nanofibers in the herringbone configuration into the thermal interface material. The system further includes a means for applying a magnetic field of sufficient intensity to align the graphite nanofibers in the thermal interface material.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph Kuczynski, Arvind K. Sinha, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 8101263
    Abstract: A cooling system comprising a plurality of coolant channels comprising a fluid-impervious surface comprising a base surface, at least one distinct region of the base surface covered by a mixed monolayer, the mixed monolayer comprising a species having a functional group M1 and a species having a functional group M2 where M1 and M2 have different surface energies, the mixed monolayer forming a surface energy gradient within the region and wherein any portions of the surface that border the at least one distinct region have substantially equal surface energies.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 24, 2012
    Inventor: Brian David Babcock
  • Patent number: 8097173
    Abstract: The invention provides porous particles that produce a predetermined optical response and that may be manipulated magnetically. A preferred particle of the invention has a porous structure that produces a predetermined optical response and magnetic material adhered to the particle. Another preferred particle is amphiphilic. The optical response provided by a particle of the invention enables particles of the invention to be used in sensing, labeling, signaling, display and many other applications. The magnetic nature of the present magnetic particles permits the particles themselves to be manipulated, e.g., vibrated, moved and re-oriented. The porous particles can also be used to control, move, and/or deliver small volumes of liquids and solids associated with the particles.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: January 17, 2012
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Yang Yang Li, Nathan Trujillo, Jason Dorvee
  • Publication number: 20120003675
    Abstract: Engineered reaction containers that can be physically and chemically defined to control the flux of molecules of different sizes and charge are disclosed. Methods for constructing small volume reaction containers through a combination of etching and deposition are also disclosed. The methods allow for the fabrication of multiple devices that possess features on multiple length scales, specifically small volume containers with controlled porosity on the nanoscale.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 5, 2012
    Inventors: Scott T. Retterer, Mitchel J. Doktycz
  • Publication number: 20110297084
    Abstract: An all-additive apparatus for direct fabrication of nanometer-scale planar and multilayer structures that performs “pick-and-place” retrieval and deposition of materials comprises a tip and a controller and transport mechanism configured for causing the tip to acquire a transferable material and deposit at least a portion of the acquired transferable material at a predetermined location onto a substrate, without the use of a bridging medium, in order to directly assemble a structure. The tip may be submillimeter-scale, may comprise a plurality of sub-tips disposed in a predetermined arrangement, and/or may mechanically vibrate. Mechanical vibration of the tip may be monitored. The tip may acquire the transferable material from a reservoir. The assembled structure may be cured on the substrate.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Brian Hubert, Joseph Jacobson, Aggelos Bletsas
  • Publication number: 20110300251
    Abstract: Carriers for the production and targeted and/or delayed release, particularly of agricultural active substances, as well as a method for the output and a device for the production of such carriers in a loaded or unloaded state are proposed. The method and the device use the technology of electrospinning.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 8, 2011
    Applicants: Justus-Liebig Universitat Giessen, Philipps-Universitat Marburg
    Inventors: Andreas GREINER, Hans E. Hummel, Joachim H. Wendorff, Mathias Becker, Roland Dersch
  • Patent number: 8047361
    Abstract: Provided are a gas storage structure and a gas storage apparatus including the gas storage structure. The gas storage structure includes a gas storage part including an opening thereon and an entrance control part disposed on the opening and including a gate.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: November 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Han-Young Yu, Byung-Hoon Kim, Soon-Young Oh, Yong-Ju Yun
  • Publication number: 20110253630
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Application
    Filed: November 29, 2010
    Publication date: October 20, 2011
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Sangil Kim
  • Publication number: 20110253908
    Abstract: A TEM micro-grid is provided. The TEM micro-grid includes a carrier, a carbon nanotube structure, and a protector. The carrier defines a first through opening. The provided defines a second through opening. The carbon nanotube structure is located between a surface of the carrier and a surface of the protector. The carbon nanotube structure covers at least part of the first through opening.
    Type: Application
    Filed: November 11, 2010
    Publication date: October 20, 2011
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventors: CHEN FENG, LI FAN, LIANG LIU, LI QIAN, YU-QUAN WANG
  • Publication number: 20110253907
    Abstract: A transmission electron microscope micro-grid includes a support ring and a sheet-shaped carbon nanotube structure. The support ring has a through hole defined therein. The sheet-shaped carbon nanotube structure has a peripheral edge secured on the support ring and a central area suspended above the through hole. The sheet-shaped carbon nanotube structure includes at least one linear carbon nanotube structure or at least one carbon nanotube film.
    Type: Application
    Filed: November 11, 2010
    Publication date: October 20, 2011
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventors: LI QIAN, LI FAN, LIANG LIU, CHEN FENG, YU-QUAN WANG
  • Publication number: 20110256224
    Abstract: The disclosure provides compounds and compositions, and methods of using these compounds and compositions, for the targeted delivery of therapeutic agents. In one embodiment, these compositions are used for the tumor-targeted delivery of chemotherapeutic agents useful for treating cancer.
    Type: Application
    Filed: February 16, 2011
    Publication date: October 20, 2011
    Applicant: SIGNABLOK, INC.
    Inventor: Alexander B. Sigalov
  • Patent number: 8028567
    Abstract: AFM tweezers that include a first probe, including a triangular prism member having a tip of a ridge which is usable as a probe tip in a scanning probe microscope, and a second probe, including a triangular prism member provided so as to open/close with respect to the first probe, are provided. The first probe and the second probe are juxtaposed such that a predetermined peripheral surface of the triangular prism member of the first probe and a predetermined peripheral surface of the triangular prism member of the second probe face substantially in parallel to each other, and the first probe formed of a notch that prevents interference with a sample when the sample is scanned by the tip of the ridge.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: October 4, 2011
    Assignees: AOI Electronics Co., Ltd., SII Nano Technology Inc.
    Inventors: Tatsuya Kobayashi, Masato Suzuki, Masatoshi Yasutake, Takeshi Umemoto
  • Publication number: 20110236670
    Abstract: The present invention concerns an intermediate reinforced composite part composed of an assembly of at least two composite members (1,2,4,5) each comprising reinforcing fibres or fabrics and an impregnation matrix, said assembly comprising a bonding agent (3) ensuring a mechanical bond between said members, characterised in that the bonding agent (3) comprises at least one carbon nanotube (“Bucky Paper”) sheet.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: EUROCOPTER DEUTSCHLAND GMBH
    Inventors: Steffen Kunze, Christian Wellhausen, Tim Roser
  • Publication number: 20110200657
    Abstract: Nanoemulsion compositions with low toxicity that demonstrate broad spectrum inactivation of microorganisms or prevention of diseases are described. The nanoemulsions contain an aqueous phase, an oil phase comprising an oil and an organic solvent, at least one anti-inflammatory agent, and one or more surfactants. Methods of making nanoemulsions and inactivating pathogenic microorganisms are also provided.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Inventor: James R. Baker
  • Patent number: 7998431
    Abstract: An apparatus comprising a substrate having a surface with a volume-tunable-material on the surface and fluid-support-structures over the surface and partially embedded in the volume-tunable-material. Each of said fluid-support-structures has at least one dimension of about 1 millimeter or less, and the fluid-support-structures are moveable in response to a volume transition of the volume-tunable-material.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 16, 2011
    Assignee: Alcatel Lucent
    Inventors: Joanna Aizenberg, Paul Robert Kolodner, Thomas Nikita Krupenkin, Oleksandr Sydorenko, Joseph Ashley Taylor
  • Publication number: 20110156528
    Abstract: A micro actuator system includes a micro actuator and a light beam generator. The micro actuator includes a substrate, a cantilever beam, and a carbon nano-tube layer. The cantilever beam has a connection portion connected to the substrate, and the carbon nano-tube layer is disposed on the cantilever beam in a spray deposition technique. When the light beam generator generates a light beam for irradiating the carbon nano-tube layer on the connection portion of the cantilever beam, the carbon nano-tube layer drives the cantilever beam to be deformed towards a first direction.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 30, 2011
    Inventors: Chien-Chong Hong, Sheng-Chin Su
  • Publication number: 20110144314
    Abstract: The present invention relates to a method for selectively extracting membrane proteins using at least one calixarene of formula (I). The use of calixarenes in the method according to the invention enables the selective solubilization of the membrane proteins while preserving the three-dimensional structure that is essential to the enzymatic activity thereof.
    Type: Application
    Filed: May 28, 2009
    Publication date: June 16, 2011
    Applicants: Centre National De La Recherche Scientifique CNRS, Universite Claude Bernard De Lyon 1
    Inventors: Anthony William Coleman, Cyrille Mbemba, Pierre Falson, Rima Matar, Frédéric Huché
  • Publication number: 20110127165
    Abstract: Disclosed herein are an apparatus and a method for separating molecules on the basis of size and or structure, and to a method of making the apparatus. Generally, the separation method includes passing a fluid comprising particles having different effective molecular diameters through a plurality of open, nanoscale channels disposed in surfaces of substrates. The method also includes obtaining a plurality of fractions of the passed fluid such that each of the fractions includes a major portion containing particles having similar size and shape and substantially free of particles having larger size and shape. The apparatus includes first and second substrates each of which has a surface containing a plurality of open, nanoscale channels disposed therein. The surfaces are bonded together such that each of the channels of the first substrate is in fluid communication with at least two of the channels of the second substrate and is misaligned relative to the channels of the second substrate.
    Type: Application
    Filed: February 9, 2011
    Publication date: June 2, 2011
    Inventor: Scott Sibbett
  • Publication number: 20110124077
    Abstract: Magnetic array platforms such as nano or micro-wire networks that produce trapping, manipulation, and transport of micro- or nano-scale particles such as non-biological entities such as magnetic particles and cells, viruses, DNA, proteins, and other biological entities having magnetic particles labeled or tethered thereto are provided. Methods of manipulating, transporting, and sorting micro- or nano-scale particles are described.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Ratnasingham Sooryakumar, Dhriti Sooryakumar, Gregory Vieira, Jeffrey J. Chalmers
  • Publication number: 20110120868
    Abstract: The present invention is directed to systems, devices and methods for identifying biopolymers, such as strands of DNA, as they pass through a constriction such as a carbon nanotube nanopore. More particularly, the invention is directed to such systems, devices and methods in which a newly translocated portion of the biopolymer forms a temporary electrical circuit between the nanotube nanopore and a second electrode, which may also be a nanotube. Further, the invention is directed to such systems, devices and methods in which the constriction is provided with a functionalized unit which, together with a newly translocated portion of the biopolymer, forms a temporary electrical circuit that can be used to characterize that portion of the biopolymer.
    Type: Application
    Filed: March 18, 2009
    Publication date: May 26, 2011
    Applicant: Arizona Board of Regents Acting for and on Behalf of Arizona State University
    Inventors: Stuart Lindsay, Jin He, Peiming Zhang, Kevin Reinhart
  • Publication number: 20110091561
    Abstract: The present invention provides stable perfluorcarbon nanoemulsions with endocytosis enhancing surfaces that are suitable for gene-transfer, its production and use.
    Type: Application
    Filed: May 13, 2009
    Publication date: April 21, 2011
    Applicant: SOLUVENTIS UG
    Inventor: Sören Schreiber
  • Patent number: 7926328
    Abstract: There is provided a sample manipulating apparatus which is an apparatus for manipulating a sample mounted on a substrate surface, in which at least position data and shape data are acquired by observing the sample. Thereafter, tweezers are positioned by moving means such that the sample is positioned between an observing probe and a grasping probe based on the two set of data. After positioning, a height of the tweezers is set to a position of being remote from the substrate surface by a constant distance by moving means while monitoring a result of measurement by displacement measuring means. Thereafter, the grasping probe is moved to a side of the observing probe while monitoring the result of measurement by the displacement measuring means at the set height and the sample is grasped while detecting a grasping start point.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 19, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masatoshi Yasutake, Takeshi Umemoto, Masafumi Watanabe
  • Publication number: 20110086082
    Abstract: An implantable drug delivery device loaded with a beneficial agent is provided, wherein the beneficial agent is in two different forms, a first form having a higher solubility and a second form having a lower solubility, and wherein the two different forms are present in a proportion which is selected to achieve a desired release rate.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Innovational Holdings, LLC
    Inventors: Theodore L. PARKER, Stephen Hunter Diaz, John F. Shanley, Diane Mai Huong Dang, Thai Minh Nguyen
  • Publication number: 20110038787
    Abstract: A system includes a carbon nanotube and a torsion device. The torsion device is coupled to the carbon nanotube. The torsion device is configured to apply torsion to the carbon nanotube.
    Type: Application
    Filed: July 6, 2010
    Publication date: February 17, 2011
    Applicant: Technology Transfer Office, University of Manitoba
    Inventor: Quan Wang
  • Patent number: 7849515
    Abstract: A nanotweezer (1) according to the present invention includes: a supporting member (25); an observation probe (10) that projects out from the supporting member (25), and is used when observing a surface of a specimen; a movable arm (20) that is arranged next to the observation probe (10) projecting out from the supporting member (25), and makes closed or opened between the observation probe (10) and the movable arm (20) to hold or release the specimen held between the observation probe (10) and the movable arm (20); and a drive mechanism that drives the movable arm (20) so as to make closed or opened between the observation probe (10) and the movable arm (20), and the supporting member (25), the observation probe (10) and the movable arm (20) are each formed by processing a semiconductor wafer (30) through a photolithography process.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 7, 2010
    Assignees: National University Corporation Kagawa University, AOI Electronics Co., Ltd.
    Inventors: Gen Hashiguchi, Maho Hosogi, Takashi Konno
  • Publication number: 20100284903
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 11, 2010
    Applicant: HONDA PATENTS & TECHNOLOGIES NORTH AMERICA, LLC
    Inventor: Avetik Harutyunyan
  • Publication number: 20100276628
    Abstract: The present invention provides for a high thermal conductivity (HTC) paper that comprises a host matrix, such as mica, and HTC materials intercalated into the host matrix. The HTC materials are comprised of at least one of nanofillers, diamond like coatings directly on the host matrix, and diamond like coatings on the nanofillers.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 4, 2010
    Inventors: James D. Smith, Gary Stevens, John W. Wood
  • Publication number: 20100258238
    Abstract: In accordance with the invention, there are media feeding assemblies and methods of making a roll of a media feeding assembly. The method can include providing a soluble carbon nanotube composition, providing a first elastomeric rubber composition, and mixing the soluble carbon nanotube composition with the first elastomeric rubber composition to form a composite rubber composition, such that the soluble carbon nanotubes are substantially uniformly dispersed in the composite rubber composition. The method can also include applying the composite rubber composition to a mold and curing the composite rubber composition to form a composite rubber tire, such that the substantially uniformly dispersed soluble carbon nanotubes in the composite rubber tire provide at least about 10% decrease in wear.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 14, 2010
    Applicant: XEROX CORPORATION
    Inventors: Linn C. HOOVER, Kock-Yee LAW
  • Patent number: 7795037
    Abstract: Methods for using semiconductor nanocrystals for determining fluid movement, fluid dilution and fluid removal are described. Methods for using semiconductor nanocrystals for monitoring and quantifying the amounts of solid materials dissolved in a liquid are also described.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: September 14, 2010
    Assignee: Novartis Vaccines and Diagnostics, Inc.
    Inventors: Willy Lagwinski, Charles Harrington, Bruce Phelps
  • Patent number: 7790265
    Abstract: A surface energy gradient on a fluid-impervious surface and method of its creation comprising the steps of a) Exposing a base surface having a proximal and a distal portion to a first solution comprising at least one molecule of the formula X-J-M1 wherein X and M1 represent separate functional groups and J represents a spacer moiety that, together, are able to promote formation from solution of a self-assembled monolayer for sufficient time to form a monolayer surface having a uniform surface energy on the base surface. b) Removing a portion of the monolayer of (a) such that a portion of the base surface is again fully or partially exposed. (c) Exposing the portion of the base surface from (b) to at least one other molecule including a functional group having a different surface energy from that of the functional group removed in(b) such that a surface energy gradient from a proximal location to a distal location is formed.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: September 7, 2010
    Inventor: Brian Babcock
  • Patent number: 7773404
    Abstract: Optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit an array of conductive regions; and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a method of forming a nanocrystalline film includes fabricating a plurality of nanocrystals having a plurality of first ligands attached to their outer surfaces; exchanging the first ligands for second ligands of different chemical composition than the first ligands; forming a film of the ligand-exchanged nanocrystals; removing the second ligands; and fusing the cores of adjacent nanocrystals in the film to form an electrical network of fused nanocrystals.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: August 10, 2010
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Sargent, Jason Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J. D. Klem, Larissa Levina
  • Publication number: 20100143424
    Abstract: It is an object of the present invention to provide: a positively charged nanoparticle which can be produced without using surfactants or synthetic polymers, the size of which can be controlled, which is stable at acidic condition, and which contains an active substance therein; and a method for producing the same. The present invention provides a casein particle, wherein zeta potential is positive.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: FUJIFILM CORPORATION
    Inventor: Katsuhiko KANAZAWA
  • Patent number: 7732290
    Abstract: During fabrication of single-walled carbon nanotube transistor devices, a porous template with numerous parallel pores is used to hold the single-walled carbon nanotubes. The porous template or porous structure may be anodized aluminum oxide or another material. A gate region may be provided one end or both ends of the porous structure. The gate electrode may be formed and extend into the porous structure.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Etamota Corporation
    Inventors: Thomas W. Tombler, Jr., Brian Y. Lim
  • Publication number: 20100088951
    Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.
    Type: Application
    Filed: July 17, 2009
    Publication date: April 15, 2010
    Applicant: PIONEER ASTRONAUTICS
    Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin
  • Publication number: 20100076180
    Abstract: An object is to move a rail molecule by means of a biomolecular motor deposited on a base and inactivate the biomolecular motor through irradiation with light having a predetermined wavelength, to thereby readily and reliably fix the rail molecule at a predetermined position, while orienting the rail molecule in a predetermined direction without employment of any reagent. A method for fixing a rail molecule which has polarity and on which a biomolecular motor moves in a direction corresponding to the polarity includes depositing a biomolecular motor on a base; moving a rail molecule by means of the biomolecular motor; and inactivating the biomolecular motor by irradiating the biomolecular motor with light having a predetermined wavelength when the rail molecule reaches a predetermined position, to thereby fix the rail molecule so that it is oriented in a predetermined direction.
    Type: Application
    Filed: November 21, 2005
    Publication date: March 25, 2010
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Hiroyuki Fujita, Shoji Takeuchi, Ryuji Yokokawa
  • Patent number: 7651871
    Abstract: A device includes a plurality of structures, each structure including at least one ferromagnetic layer having fringe fields. Fringe fields of the structures interact to form a magnetic well for nanoparticles. This device may be adapted for biosensing, wherein the magnetic well is formed about a probe area.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: January 26, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Manish Sharma
  • Publication number: 20100004121
    Abstract: The present invention is related to a short carbon nanotube for a catalyst support. In particular, the short carbon nanotube may be opened at both ends, a length of less than about 300 nm, and an aspect ratio in the range of about 1 to about 15. The short carbon nanotube has a broad surface area and better electric conductivity and is opened at both ends, thereby impregnating a metallic catalyst into the inner side of the carbon nanotube. Also, a catalyst impregnated carbon nanotube has a broad effective specific surface area, and thus, has an improved efficiency of catalyst utilization, can reduce an amount of the catalyst used and can efficiently diffuse a fuel. Accordingly, when catalyst impregnated carbon nanotube is used in a fuel cell, etc., improvements can be made in the pricing, power density of an electrode, and energy density of a fuel cell.
    Type: Application
    Filed: January 6, 2005
    Publication date: January 7, 2010
    Inventors: Hyuk Chang, Chan-ho Pak, Jian Nong Wang
  • Patent number: 7641863
    Abstract: A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover defining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to and extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivatization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: January 5, 2010
    Assignee: UT-Battelle LLC
    Inventors: Mitchel J. Doktycz, Michael L. Simpson, Timothy E. McKnight, Anatoli V. Melechko, Douglas H. Lowndes, Michael A. Guillorn, Vladimir I. Merkulov
  • Patent number: 7625475
    Abstract: A microfluidic pump has an outer housing such as a capillary tube, a nanotube, and an ionic fluid or alcohol. The nanotube is placed inside the capillary tube, and the capillary tube is filled with the ionic fluid or alcohol. A voltage source is connected to the nanotube, and upon application of a voltage to the nanotube, the ionic fluid or alcohol is pumped through the capillary tube.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: December 1, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Robert J. Howard
  • Publication number: 20090266143
    Abstract: In a chromatograph, a separation column is disposed between an injection system and a detector. The separation column includes a bundle of capillaries which are formed of carbon nanotubes with a typical diameter of 0.5 nm to 5 nm and may number in the several hundreds.
    Type: Application
    Filed: July 5, 2006
    Publication date: October 29, 2009
    Inventors: Matthias Rebhan, Daniel Sickert
  • Publication number: 20090257921
    Abstract: An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: Brookhaven Science Association, LLC
    Inventors: Peter Werner Sutter, Eli Anguelova Sutter
  • Publication number: 20090220413
    Abstract: Provided is a novel catalyst for methane steam reformation which enables a highly efficient production of hydrogen at a lower reaction temperature of lower than 500° C. without the need for a high temperature condition of a conventional temperature of 500° C. or higher, actually as high as 700 to 800° C. by use of a catalyst for methane steam reformation that is characterized in supporting one kind or more of noble metals or one kind or more of each of noble metals and lanthanide metals in a microporous carbon material, and a method of producing hydrogen using the catalyst.
    Type: Application
    Filed: June 30, 2006
    Publication date: September 3, 2009
    Inventors: Iijima Sumio, Masako Yudasaka, Katsuyuki Murata
  • Publication number: 20090123789
    Abstract: There is disclosed articles for and methods of confining volatile materials in the void volume defined by crystalline void materials. In one embodiment, the hydrogen isotopes are confined inside carbon nanotubes for storage and the production of energy. There is also disclosed a method of generating various reactions by confining the volatile materials inside the crystalline void structure and releasing the confined volatile material. In this embodiment, the released volatile material may be combined with a different material to initiate or sustain a chemical, thermal, nuclear, electrical, mechanical, or biological reaction.
    Type: Application
    Filed: May 9, 2008
    Publication date: May 14, 2009
    Inventors: William K. Cooper, James F. Loan, Christopher H. Cooper
  • Patent number: 7515010
    Abstract: A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: April 7, 2009
    Assignee: The Regents of the University of California
    Inventors: Alexander K. Zettl, Brian C. Regan, Shaul Aloni
  • Publication number: 20090084678
    Abstract: Nanoelectronic devices for the detection and quantification of biomolecules are Provided. In certain embodiments, the devices are configured to detect and measure blood glucose levels. Also provided are methods of fabricating nanoelectronic devices for the detection of biomolecules.
    Type: Application
    Filed: June 25, 2008
    Publication date: April 2, 2009
    Applicant: NANOMIX, INC.
    Inventors: Kanchan A. Joshi, Ray Radtkey, Christian Valcke
  • Patent number: 7507987
    Abstract: A method for making packets of nanostructures is presented. The method includes etching trenches in a silicon substrate. Nanostructures are grown in the trenches. The trenches are then filled with a filler material. Any filler and/or nanostructures material extending beyond the trench is removed. The silicon substrate is etched away, resulting in a nanopellet surrounding the nanostructures and wherein each nanostructures has a generally uniform length and direction. Nanostructures can comprise nanotubes, nanowires and nanofibers. The method eases the manipulation of nanostructures while providing geometrical uniformity.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: March 24, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Sang-Gook Kim, Tarek A. El Aguizy, Jeung-hyun Jeong, Yongbae Jeon
  • Patent number: 7491263
    Abstract: A gas storage assembly that has an enclosure within which are disposed at least about 100 inorganic tubules are present for each cubic micron of volume of the enclosure. The assembly has a storage capacity of at least 20 grams of hydrogen per liter of volume of the enclosure.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 17, 2009
    Assignee: Technology Innovation, LLC
    Inventors: Xingwu Wang, Howard J. Greenwald
  • Patent number: 7465381
    Abstract: A method for separation of mixtures in fluidic systems through electrokinetic transport by use of nanochannels when the fluidic systems approach the size of an electrical double layer, thereby allowing separation based on charge. The disclosed apparatus comprises a T-chip with a nanochannel section. The method and apparatus are useful for separation of many molecular species, including peptides, proteins, and DNA.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: December 16, 2008
    Assignee: STC.UNM
    Inventors: Gabriel P. Lopez, Steven R. J. Brueck, Linnea K. Ista, Anthony L. Garcia, Dimiter N. Petsev, Paul Bisong, Michael J. O'Brien
  • Publication number: 20080269083
    Abstract: The invention relates to a method of treating permeable rocks wherein the following stages are carried out: producing particles of nanometric size comprising an active anti-mineral-deposit water-soluble polymer encapsulated in either a matrix so as to form a nanocomplex or a nanosphere, or in a membrane so as to form a nanocapsule; maintaining an amount of said particles dispersed in a liquid phase; injecting the dispersion into the permeable rock; and releasing the active polymer upon contact with salt water.
    Type: Application
    Filed: February 6, 2006
    Publication date: October 30, 2008
    Inventors: Jean-Francois Argillier, David Pasquier