Patents Represented by Attorney Ann C. Petersen
  • Patent number: 7351377
    Abstract: Methods and devices that include the use of venting elements for enhancing bonded substrate yields and regulating temperature. Venting elements are generally fabricated proximal to functionalized regions in substrate surfaces to prevent bond voids that form during bonding processes from affecting the functionalized regions. Venting elements generally include venting channels or networks of channels and/or venting cavities.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 1, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: David Chazan, Luc J. Bousse, Carlton Brooks, Derek Louch, Michael R. Spaid
  • Patent number: 7343248
    Abstract: Techniques for controlling analytical instruments are provided. A sequence of steps can be utilized to specify wells of a microfluidic device, mobility to be applied to fluid in the wells, and the duration to apply the mobility. For example, fluids can be sequentially run past down a main channel to a detection zone of the microfluidic device in order to analyze the fluids. In order to increase the efficiency of the analysis, fluids can be processed in parallel by running one fluid down the main channel while another fluid is loaded to the main channel.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: March 11, 2008
    Assignee: Caliper Life Sciences
    Inventors: J. Wallace Parce, Morten J. Jensen
  • Patent number: 7316801
    Abstract: The invention provides improved systems, devices, and methods for analyzing a large number of sample compounds contained in standard multi-well microtiter plates or other array structures. The multi-well plates travel along a conveyor system to a test station having a microfluidic device. At the test station, each plate is removed from the conveyor and the wells of the multi-well plate are sequentially aligned with an input port of the microfluidic device. After at least a portion of each sample has been input into the microfluidic channel system, the plate is returned to the conveyor system. Pre and/or post testing stations may be disposed along the conveyor system, and the use of an X-Y-Z robotic arm and novel plate support bracket allows each of the samples in the wells to be input into the microfluidic network through a probe affixed to a microfluidic chip.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: January 8, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Joseph E. Kercso, Steven A. Sundberg, Jeffrey A. Wolk, Andrew W. Toth, Calvin Y. H. Chow, J. Wallace Parce
  • Patent number: 7303862
    Abstract: Microfabrication methods and devices in which microscale structural elements are provided in an intermediate polymer layer between two planar substrates. Preferred aspects utilize photoimagable or ablatable polymer layers as the intermediate polymer layer.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 4, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventor: Chazan David
  • Patent number: 7303727
    Abstract: Methods and apparatus for delivering fluidic materials to sample destinations, including mass spectrometers for analysis are provided. In preferred embodiments, sample aliquots are electrosprayed from tapered spray tips of capillary elements into the orifices of mass spectrometric inlet systems. In certain embodiments, fluidic samples are orthogonally sprayed from capillary elements or other fluid conduits, whereas in other embodiments samples are sprayed after devices are rotated or otherwise translocated from sample sources to sample destinations. In still other embodiments, samples are sprayed from flexed or deflected capillary elements at selected sample destinations.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: December 4, 2007
    Assignee: Caliper Life Sciences, Inc
    Inventors: Robert S. Dubrow, Michael Greenstein, Luc J. Bousse, Khushroo Gandhi
  • Patent number: 7252928
    Abstract: Methods for reducing surface adsorption of biological materials to the walls of microfluidic conduits in microscale devices are provided. In an example of the methods, one or more colloidal-size particles, such as colloidal silica particles, are flowed in a fluid within the microfluidic conduit in the presence of one or more adherent biological materials (such as one or more proteins, cells, carbohydrates, nucleic acids, lipids and the like) to adsorb to the materials and prevent them from binding to the capillary walls of the microfluidic conduit. Other adsorption inhibition agents such as detergents and nonaqueous solvents can be used alone or in combination with colloidal particles to reduce surface adsorption in microfluidic conduits.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: August 7, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Dean G. Hafeman, Aileen Zhou
  • Patent number: 7247274
    Abstract: The present invention provides novel microfluidic devices and methods for preventing/ameliorating formation of precipitate blockages in microfluidic devices. In particular the devices and methods of the invention utilize microchannels of specific cross-sectional configuration and of specific arrangement as well as application of AC current orthogonal to the direction of fluid flow, in order to preventing/ameliorating formation of precipitate blockages in microfluidic devices.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: July 24, 2007
    Assignee: Caliper Technologies Corp.
    Inventor: Andrea W. Chow