Patents Represented by Attorney Benjamin Y. Roca, Esq.
  • Patent number: 6965541
    Abstract: Disclosed is a method for recording one or more images of a source area where an impulse sound has initiated. The recording is performed by at least one of a plurality of units that include a camera, a computing device, and a connection to a network. The method comprises the steps of detecting and calculating a range and direction of the impulse sound source; slewing the camera to align its optical axis with a direction of the impulse sound; determining whether the impulse sound was a gunshot; recording images of the source area; and alerting a plurality of neighboring units to perform the recording step.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: November 15, 2005
    Assignee: The Johns Hopkins University
    Inventors: Brett D. Lapin, Nicholas D. Beser
  • Patent number: 6917329
    Abstract: A flexible architecture GPS receiver having an intelligent buffer for capturing incoming sampled RF signals at a rate consistent with the GPS bandwidth and subsequent repeated “playbacks” of the buffered data at rates consistent with FPGA/ASIC hardware. The GPS receiver utilizes a “batch-mode” concept which provides for the potential of simultaneous search and tracking of GPS signals. The GPS further receiver uses lossless multiplexing for allowing single channel receiver hardware to process multiple satellite signals, i.e., to behave as multi-channel receiver hardware, without any substantial performance degradation.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 12, 2005
    Assignee: The Johns Hopkins University
    Inventor: J. Marsh Dougherty
  • Patent number: 6875196
    Abstract: The present invention provides automated control of aural irrigation by utilizing a process controller in connection with an irrigation supply unit and irrigation delivery unit. Sensors situated in the irrigation supply unit and irrigation delivery unit provide data feedback to the process controller enabling essentially instantaneous and precise control of operational parameters. In addition, data customized to individual patients as well as historical data for use in analysis is stored in and processed by the control processor to increase the accuracy and utility of the aural irrigation system. Further, patient response data (e.g., from an ENG sensor) is also input to the process controller, thereby enabling extremely fast and accurate test analysis with minimal effort by the device operator.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: April 5, 2005
    Assignee: The Johns Hopkins University
    Inventors: Joseph L. Abita, Leonard R. Proctor
  • Patent number: 6836847
    Abstract: Protection is provided for software and data in single and multiple microprocessor system, including, but not limited to, local area networks (LANs), wide area networks (WANs), backplane connected architectures, etc. The data can include databases, streaming data and code. The protection is provided by employing, singly or in combination, obscurant IC coatings, tamper detection and response circuitry, multiple component modules and software code encryption to prevent software from being stolen or altered. The software or data is protected during transport, during downloading into a processor or processor network, and also during execution and storage of code or a database within a host system. The data product resulting from processing within the protecting equipment may be encrypted to be sent safely to external locations were it may be stored or de-encrypted for further use.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: December 28, 2004
    Assignee: The Johns Hokins University
    Inventors: William H. Zinger, Jerry A. Krill
  • Patent number: 6597631
    Abstract: An expandable platform for deploying sensors in a medium includes a housing and a structural member disposed inside the housing. A releasable restraint is connected to the structural member. Multiple arms are connected to the structural member. Each arm includes a material memory component that has a natural state, corresponding to a minimum energy state, in an extended configuration. The material memory component is energized by compacting the material memory component so that the arm fits within the housing. The material memory component is restrained in an energized state by the restraint, and naturally transforms toward the extended configurations under its own force when the restraint is released. A flexible cable external to the arms is connected to two or more arms, each at a tip portion of the arm. The tip portion is farthest from the structural member when the material memory component is in the extended configuration. Multiple sensors are connected to the cable.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: July 22, 2003
    Assignee: The Johns Hopkins University
    Inventors: David A. Kitchin, Ronald W. Mitnick
  • Patent number: 6579235
    Abstract: A device for passively measuring intraocular pressure of a patient including an in vivo sensor and an instrument external to the patient for remotely energizing the sensor, thereby permitting the instrument to determine the intraocular pressure. The device directly and continuously measures the intraocular pressure of a patient. The in vivo sensor in the intraocular pressure monitor includes a capacitive pressure sensor and an inductive component. An instrument, external to the patient, measures the pressure, provides readout of the pressure values and determines the intraocular pressure.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 17, 2003
    Assignee: The Johns Hopkins University
    Inventors: Joseph L. Abita, Bliss G. Carkhuff, Roddy Frankel