Abstract: An ultra-high molecular weight methacryloyloxybenzoic acid polymer is provided which, unlike the lower molecular weight polymers of the prior art, is stable even when undergoing melt processing. The method of producing such a polymer involves a free radical polymerization of the monomer at relatively low temperatures in an aqueous solution which contains an alkali metal hydroxide and a free radical initiator.
Abstract: The classical Reimer-Tiemann reaction for the synthesis of phenolic aldehydes has been modified from an aqueous to a non-aqueous system to provide an improved route for the formation of salicylaldehydes and, preferably, 3-substituted salicylaldehydes, e.g. 3-fluorosalicylaldehyde. Heretofore, compounds such as 3-substituted salicylaldehydes have proven to be extremely difficult to prepare in other than small laboratory quantities from the corresponding ortho-substituted phenol, since, in the final salicylaldehyde, each position ortho to the hydroxyl group contains substitution. In particular, with respect to 3-fluorosalicylaldehyde, one of the positions is occupied by the strongly electronegative fluorine atom so that the principal reaction product in the aqueous Reimer-Tiemann reaction has always been the para-isomer (3-fluoro-4-hydroxy-benzaldehyde), only negligible quantities of the desired ortho-isomer being obtained.