Patents Represented by Attorney Beyer, Hoffman & Harms, LLP
  • Patent number: 8093650
    Abstract: A non-volatile memory (NVM) system includes a plurality of NVM cells fabricated in a dual-well structure. Each NVM cell includes an access transistor and an NVM transistor, wherein the access transistor has a drain region that is continuous with a source region of the NVM transistor. The drain regions of each NVM transistor in a column of the array are commonly connected to a corresponding bit line. The control gates of each NVM transistor in a row of the array are commonly connected to a corresponding word line. The source regions of each of the access transistors in the array are commonly coupled. The NVM cells are programmed and erased without having to apply the high programming voltage VPP across the gate dielectric layers of the access transistors. As a result, the NVM cells can be scaled down to sub-0.35 micron geometries.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: January 10, 2012
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Sorin S. Georgescu, A. Peter Cosmin
  • Patent number: 6969006
    Abstract: A portable card adapted to be used in a card processing system having a data processing station is shown. The portable card includes a data storage device which is adapted to interact with a data processing station when a portable card and a data processing station are rotationally moved relative to each other. The data storage device includes a substrate having a predetermined shape and at least one layer of magnetic material for storing magnetic signals. Apparatus and a method for using the rotational portable card having a data storage section is also shown.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: November 29, 2005
    Assignee: UltraCard, Inc.
    Inventor: Malcolm G. Smith, Sr.
  • Patent number: 6933548
    Abstract: A negative differential resistance device is disclosed which is particularly suited as a replacement in memory cells for conventional pull-up and load elements such as NDR diodes, passive resistors, and conventional FETs. The NDR device includes a charge trapping layer formed at or extremely near to an interface between a substrate (which can be silicon or SOI) and a gate insulation layer. The NDR device can be shut off during static operations to further reduce power dissipation.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: August 23, 2005
    Assignee: Synopsys, Inc.
    Inventor: Tsu-Jae King
  • Patent number: 6918104
    Abstract: Techniques for fabricating a device include forming a fabrication layout, such as a mask layout, for a physical design layer, such as a design for an integrated circuit, and identifying evaluation points on an edge of a polygon corresponding to the design layer for correcting proximity effects. Techniques include correcting for proximity effects associated with an edge in a first fabrication layout by determining whether any portion of the edge corresponds to a target edge in a design layer. The first fabrication layout corresponds to the design layer that indicates target edges for a printed features layer. If any portion of the edge corresponds to the target edge, then it is determined whether to establish an evaluation point on the edge. Then it is determined how to correct the edge for proximity effects based on the evaluation point. In case it is determined that no portion of the edge corresponds to the target edge, then no evaluation point is selected on the edge.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: July 12, 2005
    Assignee: Synopsys, Inc.
    Inventors: Christophe Pierrat, Youping Zhang
  • Patent number: 6912702
    Abstract: A non-linear, gain-based modeling of circuit delay within an electronic design automation system. The present invention provides a scalable cell model for use in early logic structuring and mapping for the design of integrated circuits. The scalable cell model includes a four dimensional delay model accepting input slew and gain and providing delay and output slew. By eliminating output loading as a requirement for delay computations, the scalable model of the present invention can effectively be used to provide accurate delay information for early logic synthesis processes, e.g., that precede technology dependent optimizations where the actual load of a cell is unknown. This scalable cell model considers: the impact of transition times on delay; complex gates having different input capacitances for different input pins; the impact of limited discrete cell sizes in the technology library; and design rules, e.g., maximum capacitance and maximum transition associated with gates.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: June 28, 2005
    Assignee: Synopsys, Inc.
    Inventors: Mahesh Iyer, Ashish Kapoor
  • Patent number: 6864104
    Abstract: A silicon-on-insulator (SOI) memory device (such as an SRAM) using negative differential resistance (NDR) elements is disclosed. Body effect performances for NDR FETs (and other FETs) that may be used in such device are enhanced by floating a body of some/all the NDR FETs.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: March 8, 2005
    Assignee: Progressant Technologies, Inc.
    Inventor: Tsu-Jae King
  • Patent number: 6362651
    Abstract: A method for producing multi-device PLDs wherein a wafer layout architecture includes device-linking conductors that allow a wafer to be diced into both single-device chips and multi-device chips. A multi-device chip is a single chip that includes two or more discrete PLD circuits that are connected by the device-linking conductors. Each device-linking conductor is formed on the wafer and extends across a scribe line space separating two discrete FPGA circuits. When the two discrete FPGA circuits are separated during a dicing process, the wafer is cut along the scribe line space and the device-linking conductor is severed. When a multi-device chip is formed that includes both of the discrete FPGA circuits, the device-linking conductor is selectively implemented using programmable switches to provide a signal path between the two discrete FPGA circuits.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: March 26, 2002
    Assignee: Xilinx, Inc.
    Inventor: Martin L. Voogel
  • Patent number: 6361331
    Abstract: Efficient methods for lithographically fabricating spring structures onto a substrate containing contact pads or metal vias by forming both the spring metal and release material layers using a single mask. Specifically, a pad of release material is self-aligned to the spring metal finger using a photoresist mask or a plated metal pattern, or using lift-off processing techniques. A release mask is then used to release the spring metal finger while retaining a portion of the release material that secures the anchor portion of the spring metal finger to the substrate. When the release material is electrically conductive (e.g., titanium), this release material portion is positioned directly over the contact pad or metal via, and acts as a conduit to the spring metal finger in the completed spring structure. When the release material is non-conductive, a metal strap is formed to connect the spring metal finger to the contact pad or metal via, and also to further anchor the spring metal finger to the substrate.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: March 26, 2002
    Assignee: Xerox Corporation
    Inventors: David Kirtland Fork, Jackson Ho, Rachel King-ha Lau, JengPing Lu