Abstract: The present invention relates to a surface interaction type multimode optical fiber coupler. A representative embodiment of the present invention comprises a plurality of optical fibers with at least one having an expanded core section. Sections of the optical fibers including at least a portion of the expanded core sections are fused together forming a fused section. At least one of the optical fibers is suitable for multimode operations. According to an embodiment of the present invention, a method of fabrication an optical fiber coupler comprises: providing a plurality of optical fibers with at least one having an expanded core section; and maintaining sections of the optical fibers including at least a portion of the expanded core sections in contact and simultaneously heating at least a portion of the sections that are in contact to form a fused section until a predetermined end condition is reached.
Abstract: The present invention relates to a surface interaction type multimode optical fiber coupler. A representative embodiment of the present invention comprises a plurality of optical fibers with each having an expanded core section. The expanded core sections of the optical fibers are fused together forming a fused section. Each of the optical fibers is optically coupled with at least one other optical fiber primarily through surface interaction in the fused section. The optical fibers are suitable for multimode operations. According to an embodiment of the present invention, a method of fabrication an optical fiber coupler comprises: providing a plurality of optical fibers with each having an expanded core section; and maintaining at least a portion of the expanded core sections in contact and simultaneously heating at least a portion of the expanded core sections that are in contact to form a fused section until a predetermined end condition is reached.
Abstract: A tilt switch has an electrical terminal on its top end and an electrical terminal on its bottom end. It comprises a conductive can with an opening on the top end side serving as the electrical terminal on the bottom end and a conductive cap covering the opening of the conductive can serving as the electrical terminal on the top end. An insulator member attached to the conductive can surrounding the side of the conductive cap insulating the conductive cap from said conductive can. Inside the conductive can is at least one rollable conductive member. The rollable conductive member is not in electrical contact with the conductive cap when resting on the bottom inside said conductive can. A system, which includes electrical circuits that employ the tilt switch, is responsive to the orientation of the tilt switch.
Abstract: The present invention relates to a ruggedized optical fiber collimator. An embodiment of the present invention includes a housing, an optical fiber, a collimating lens system comprising at least one lens, and an inner tube. The optical fiber extends into the housing through the inner tube. The housing houses the inner tube and the collimating lens system. The optical fiber terminates in the housing. The housing, the optical fiber, the collimating lens system and the inner tube are arranged to perform the function of an optical fiber collimator. The inner tube is made from an optical fiber compatible material. Examples of the optical fiber compatible material include ruby, quartz, and sapphire.
Abstract: The present invention relates to an integrated optical fiber collimator with a built-in polarizing beam splitter. An embodiment of the present invention includes a housing, an optical fiber, a collimating lens system that includes at least one lens, and a polarizing beam splitter. The optical fiber terminates in the housing at an optical fiber termination. The collimating lens system is in the housing and is in optically communication with the optical fiber through the optical fiber termination. The housing mechanically supports the polarizing beam splitter. The polarizing beam splitter separates the light from the optical fiber into two substantially orthogonally polarized light beams and substantially couples two orthogonally polarized light beams to the optical fiber in conjunction with the collimating lens system.