Patents Represented by Attorney, Agent or Law Firm Bradley W. Smith
  • Patent number: 6623880
    Abstract: A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: September 23, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Rodney A. Geisbrecht, Mark C. Williams
  • Patent number: 6596994
    Abstract: An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: July 22, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Randy W. Alkire, Gerold Rosenbaum, Gwyndaf Evans
  • Patent number: 6576092
    Abstract: The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: June 10, 2003
    Assignee: The United States of America as represented by the U.S. Department of Energy
    Inventors: Evan Granite, Henry W. Pennline
  • Patent number: 6545281
    Abstract: The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, 10B, 6Li, 6LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: April 8, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Douglas McGregor, Raymond Klann
  • Patent number: 6540902
    Abstract: A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: April 1, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Laszlo I. Redey, Karthick Gourishankar
  • Patent number: 6521021
    Abstract: A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: February 18, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Henry W. Pennline, Evan J. Granite, Mark C. Freeman, Richard A. Hargis, William J. O'Dowd
  • Patent number: 6517238
    Abstract: A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 11, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Jiangang Sun, Chris Deemer
  • Patent number: 6479826
    Abstract: A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity (“ohmic”) contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: November 12, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Raymond T. Klann, Douglas S. McGregor
  • Patent number: 6475310
    Abstract: A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800° C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800° C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700° C.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: November 5, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John S. Dunning, David E. Alman
  • Patent number: 6469781
    Abstract: A method and apparatus for determining the presence of molecules in a gas at concentrations of less than about 100 ppb. Light having wavelengths in the range from about 200 nm to about 350 nm is used to illuminate a flowing sample of the gas causing the molecules if present to form clusters. A mixture of the illuminated gas and a vapor is cooled until the vapor is supersaturated so that there is a small rate of homogeneous nucleation. The supersaturated vapor condenses on the clusters thus causing the clusters to grow to a size sufficient to be counted by light scattering and then the clusters are counted.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: October 22, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Joseph L. Katz, Heikki Lihavainen, Markus M. Rudek, Brian C. Salter
  • Patent number: 6461576
    Abstract: This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF4 with a eutectic melting point of 500° C. Prior to lowering the basket, the salt is heated to a temperature of between 550° C. and 700° C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF6. In addition, after dissolution, the basket contains PuO2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: October 8, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Zygmunt Tomczuk
  • Patent number: 6418194
    Abstract: A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: July 9, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Armon McPherson, Dennis M. Mills
  • Patent number: 6411666
    Abstract: A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: June 25, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Robert D. Woolley
  • Patent number: 6387337
    Abstract: A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 14, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Henry W. Pennline, James S. Hoffman
  • Patent number: 6379844
    Abstract: An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800° C. inside said receptacle chamber. A second metal with a melting point greater than about 800° C. is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 30, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Laszlo Redey, Eric J. Karell
  • Patent number: 6342102
    Abstract: In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: January 29, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Alan D. Hartman, Edward R. Argetsinger, Jeffrey S. Hansen, Jack I. Paige, Paul E. King, Paul C. Turner
  • Patent number: 6320193
    Abstract: An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 20, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John L. Morrison, Alan G. Stephens, S. Blaine Grover
  • Patent number: 6303090
    Abstract: A process for converting UF6 to a solid uranium compound such as UO2 and CaF. The UF6 vapor form is contacted with an aqueous solution of NH4OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH4OH and NH4F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH4OH and NH4F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH)2 to precipitate CaF2 leaving dilute NH4OH.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: October 16, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Alan B. Rothman, Donald G. Graczyk, Alice M. Essling, E. Philip Horwitz
  • Patent number: 6288400
    Abstract: The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: September 11, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Vincent C. Negro
  • Patent number: 6187163
    Abstract: Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu—Ga) alloy by using an electrorefining process. The solid Pu—Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu—Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500° C., resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: February 13, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Zygmunt Tomczuk