Patents Represented by Attorney Bryan H. Davidson
  • Patent number: 5284700
    Abstract: Mineral fibers, and products (e.g., building insulation products) formed of mineral fibers are treated, and thus rendered fire-resistant, by placing a phosphate-containing compound onto or in close proximity to the mineral fibers. The phosphate-containing compound is at least one which forms a high-temperature protective coating or layer on the surfaces of the mineral fibers. A preferred product of the invention will include two mineral wool layers with a septum carrying the phosphate-containing compound interposed therebetween. Exemplary phosphate-containing compounds include monoammonium phosphate, diammonium phosphate, dicalcium phosphate, monocalcium phosphate, phosphoric acid, aluminum phosphate, tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium hexametaphosphate, potassium tripolyphosphate, sodium tripolyphosphate, ammonium polyphosphate, monosodium dihydrogen phosphate, and mixtures thereof.
    Type: Grant
    Filed: January 17, 1992
    Date of Patent: February 8, 1994
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: Carl R. Strauss, Richard D. Godfrey, Steven D. Crothers, Beverly A. Goudy, Kathryn L. Brandenburg, Roy E. Shafer
  • Patent number: 5169529
    Abstract: Modules for use in fluid separations, especially contained liquid membrane separations, exhibit minimal effective membrane thickness. The modules have a module case and bundle of a dense plurality of hollow fiber membranes contained in the case. One set of the fiber membranes in the bundle constitutes feed-fibers while another set of the fiber membranes in the bundle constitutes strip-fibers for use in contained liquid membrane separations. The feed-fibers and strip-fibers are disposed within the elongate module case in opposite generally wave-like paths such that the feed-fibers and strip-fibers converge at generally lengthwise-separated crossing regions within the module. This disposition of the feed-fibers and the strip-fibers minimizes the effective membrane thickness value of the module as compared to conventional contained liquid membrane modules thereby enhancing the efficacy of fluid separations.
    Type: Grant
    Filed: April 22, 1991
    Date of Patent: December 8, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Robert H. Carroll, Terry A. Barber, Bradley W. Reed
  • Patent number: 5013439
    Abstract: Disclosed are a process for forming an open-celled microporous membrane (e.g., in film or fiber form) and a novel microporous membrane formed thereby. The process generally includes sequential cold and hot stretching operations, whereby the cold stretching operation is preferably accomplished in a plurality of discrete cold stretching steps. In this regard, the total cold stretch extension is of greater than about 30 percent, and advantageously greater than about 40 percent based upon the initial unstretched length of the nonporous precursor, with this total cold stretch ratio being distributed among a plurality of discrete cold stretching steps. The novel membranes of this invention are characterized by decreased pore size and increased pore densities. For example, the membranes of this invention will have an average pore radius as determined by mercury porosimetry of less than about 0.040 micron. The membranes of this invention, moreover, exhibit a distinctive "bluish" color hue (i.e., a Macbeth Coloreye.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: May 7, 1991
    Assignee: Hoechst Celanese Corporation
    Inventors: Harold M. Fisher, Daniel E. Leone, James J. Lowery
  • Patent number: 4655230
    Abstract: A continuous rod of a product such as cigarette filter material is coated with a treating liquid by being passed axially through a cylindrical applicator zone comprising a permeable cylindrical wall, the cylindrical wall being concentrically enclosed within a reservoir and manifold zone connected to a source of liquid. The feed supply for the liquid additive can be pressurized and/or heated, so that application of the additive can be in either liquid or vapor form. The process and apparatus of this invention may be used alone or in conjunction with prior art homogeneous applicators and processes.When used to apply a plasticizer to a rod of continuous filament tow, e.g. for use in producing cigarette filters, annular regions of varying concentrations of the plasticizer are produced in the rod. A relatively dense region of plasticized fiber can be produced on the outside of the filter. Filter rods having wrapping paper uniformly adhered about the periphery of the rod can be produced.
    Type: Grant
    Filed: March 29, 1985
    Date of Patent: April 7, 1987
    Assignee: Celanese Corporation
    Inventors: Ronald O. Bryant, William L. Millen, Robert E. Swander
  • Patent number: 4620956
    Abstract: An improved process for the production of a microporous polyethylene film by cold stretching and hot stretching a non-porous crystalline, elastic polyethylene film, whereby the permeability of the resultant film is improved by controlling both the stretching rates during cold and hot stretching and the sum of the changes in length during each stretching step.
    Type: Grant
    Filed: July 19, 1985
    Date of Patent: November 4, 1986
    Assignee: Celanese Corporation
    Inventor: Edward A. G. Hamer
  • Patent number: 4567102
    Abstract: A hot melt, non-aqueous glass size composition consists of an ethylene-ethylacrylate copolymer, a micro-crystalline wax, a phenolic-modified terpene resin and a silane.
    Type: Grant
    Filed: May 24, 1984
    Date of Patent: January 28, 1986
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: Jean-Claude Pollet, Gordon P. Armstrong, Martin C. Flautt
  • Patent number: 4551390
    Abstract: This invention pertains to a method to permit the molding of a plurality of plies of polymeric compositions into an integral molded object having a minimum number of internal flaws and, therefore, improved properties. The plies are positioned in contiguous relationship, and the initiation of the polymerization reactions is controlled by selecting catalyst systems which substantially simultaneously initiate polymerization in each of the plies to prevent the development of curing seams at the points of contact between the plies.
    Type: Grant
    Filed: May 9, 1983
    Date of Patent: November 5, 1985
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: John L. Canning, John F. Kay
  • Patent number: 4537610
    Abstract: Method for producing discrete bundles of filaments includes applying a non-aqueous, hot melt coating material to continuous filaments and gathering the coated continuous filaments into a bundle. The coating material is solidified on the continuous filament bundle so as to establish a first cross-sectional shape and the bundle is then severed into discrete segments whereby the bundle segments are deformed so as to exhibit a second cross-sectional shape at the severed regions. The bundle segments are then heated sufficiently to soften the coating material to permit the bundle segments to substantially return to the first cross-sectional shape.The apparatus of the invention includes a primary applicator for applying a production coating to the filaments and an interim applicator for applying a start-up coating to the filaments.
    Type: Grant
    Filed: May 24, 1984
    Date of Patent: August 27, 1985
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: Gordon P. Armstrong, Martin C. Flautt