Patents Represented by Attorney, Agent or Law Firm Charles Guenzer
  • Patent number: 7906348
    Abstract: A thermal processing system and method including scanning a line beam of intense radiation in a direction transverse to the line direction for thermally processing a wafer with a localized effectively pulsed beam of radiant energy. The thickness of the wafer is two-dimensionally mapped and the map is used to control the degree of thermal processing, for example, the intensity of radiation in the line beam to increase the uniformity. The processing may include selective etching of a pre-existing layer or depositing more material by chemical vapor deposition.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 15, 2011
    Assignee: Applied Materials, Inc.
    Inventor: Andreas G. Hegedus
  • Patent number: 7846310
    Abstract: A electromagnet array structure including multiple electromagnetic coils captured in a rigid encapsulant, for example, of cured epoxy resin, to form a unitary free-standing structure which can be placed around the walls of a plasma processing chamber. A liquid cooling coil may also be captured in the encapsulant between the electromagnetic coils. The structure may additionally include water fittings, locating pins, through tubes for chamber bolts, and lifting brackets.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: December 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Gillard, Anthony Vesci, Keith A. Miller
  • Patent number: 7807579
    Abstract: An oxygen-free hydrogen plasma ashing process particularly useful for low-k dielectric materials based on hydrogenated silicon oxycarbide materials. The main ashing step includes exposing a previously etched dielectric layer to a plasma of hydrogen and optional nitrogen, a larger amount of water vapor, and a yet larger amount of argon or helium. Especially for porous low-k dielectrics, the main ashing plasma additionally contains a hydrocarbon gas such as methane. The main ashing may be preceded by a short surface treatment by a plasma of a hydrogen-containing reducing gas such as hydrogen and optional nitrogen.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: October 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Chan-Syun Yang, Changhun Lee
  • Patent number: 7807030
    Abstract: A small magnet assembly having a magnet assembly of area less than 10% of the target area, is scanned in a retrograde planetary or epicyclic path about the back of a target being plasma sputtered including an orbital rotation about the center axis of the target and a planetary rotation about another axis rotating about the target center axis. The magnet assembly passes through the target center, thus allowing full target coverage. A properly chosen ratio of the two rotations about respective axes produces a much slower magnet velocity near the target periphery than at the target center. A geared planetary mechanism includes a rotating drive plate, a fixed center gear, and an idler and a follower gear rotatably supported in the drive plane supporting a cantilevered magnet assembly on the side of the drive plate facing the target.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ilyoung Richard Hong, James Tsung, Daniel Clarence Lubben, Peijun Ding, Nirmalya Maity
  • Patent number: 7789331
    Abstract: A method of jet milling silicon powder in which silicon pellets are fed into a jet mill producing a gas vortex in which the pellets are entrained and pulverized by collisions with each other or walls of the milling chamber. The chamber walls are advantageously formed of high-purity silicon as are other parts contacting the unground pellets or ground powder. The pellets and chamber parts may be formed of electronic grade silicon but polycrystalline silicon may be used for chamber parts. Additionally, the particle feed tube in which the particles are entrained in a gas flow and the vortex finder operating as the outlet at the center of the vortex may be formed of silicon. The milling and feed gas may be nitrogen supplied from a liquid-nitrogen tank lined with stainless steel. The feed pellets may be formed by chemical vapor deposition.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: September 7, 2010
    Assignee: Integrated Photovoltaics, Inc.
    Inventors: Ranaan Zehavi, James E. Boyle
  • Patent number: 7790604
    Abstract: A method of depositing a bilayer of tungsten over tungsten nitride by a plasma sputtering process in which krypton is used as the sputter working gas during the tungsten deposition. Argon may be used as the sputtering working gas during the reactive sputtering deposition of tungsten nitride. The beneficial effect of reduction of tungsten resistivity is increased when the thickness of the tungsten layer is less than 50 nm and further increased when less than 35 nm. The method may be used in forming a gate stack including a polysilicon layer over a gate oxide layer over a silicon gate region of a MOS transistor in which the tungsten nitride acts as a barrier. A plasma sputter chamber in which the invention may be practiced includes gas sources of krypton, argon, and nitrogen.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Srinivas Gandikota, Kishore Lavu
  • Patent number: 7772134
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 10, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 7767064
    Abstract: A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 3, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Cristopher M. Pavloff, Winsor Lam, Tza-Jing Gung, Hong S. Yang, Ilyoung Richard Hong
  • Patent number: 7754610
    Abstract: A method of plasma etching tungsten silicide over polysilicon particularly useful in fabricating flash memory having both a densely packed area and an open (iso) area requiring a long over etch due to microloading. Wafer biasing is decreased in the over etch. The principal etchant include NF3 and Cl2. Argon is added to prevent undercutting at the dense/iso interface. Oxygen and nitrogen oxidize any exposed silicon to increase etch selectivity and straightens the etch profile. SiCl4 may be added for additional selectivity.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: July 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kyeong-Tae Lee, Jinhan Choi, Bi Jang, Shashank C. Deshmukh, Meihua Shen, Thorsten B. Lill, Jae Bum Yu
  • Patent number: 7749361
    Abstract: A method of sputtering a copper seed layer and the target used therewith. The copper included in the sputtering target includes a first dopant reactive with copper and a second dopant unreactive with copper. Examples of the first dopant include Ti, Mg, and Al. Examples of the second dopant include Pd, Sn, In, Ir, and Ag. The amount of the first dopant may be determined by testing stress migration and that of the second dopant by testing electromigration.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jie Chen, Peijun Ding, Suraj Rengarajan, Ling Chen, Tram Vo
  • Patent number: 7736473
    Abstract: A continuously variable multi-position magnetron that is rotated about a central axis in back of a sputtering target at a freely selected radius. The position is dynamically controlled from the outside, for example, through a hydraulic actuator connected between a pivoting arm supporting the magnetron and an arm fixed to the shaft, by two coaxial shafts independent controllable from the outside and supporting the magnetron through a frog-leg mechanism, or a cable connected between the pivoting arms and moved by an external slider. The magnetron can be rotated at two, three, or more discrete radii or be moved in a continuous spiral pattern.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Anantha K. Subramani, Maurice E. Ewert, Tza-Jing Gung, Hong S. Yang, Vincent E. Burkhart
  • Patent number: 7704887
    Abstract: A plasma cleaning method particularly useful for removing photoresist and oxide residue from a porous low-k dielectric with a high carbon content prior to sputter deposition. A remote plasma source produces a plasma primarily of hydrogen radicals. The hydrogen pressure may be kept relatively low, for example, at 30 milliTorr. Optionally, helium may be added to the processing gas with the hydrogen partial pressure held below 150 milliTorr. Superior results are obtained with 70% helium in 400 milliTorr of hydrogen and helium. Preferably, an ion filter, such as a magnetic filter, removes hydrogen and other ions from the output of the remote plasma source and a supply tube from the remote plasma source includes a removable dielectric liner in combination with dielectric showerhead and manifold liner.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: April 27, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Fu, John Forster, Jick Yu, Ajay Bhatnagar, Praburam Gopalraja
  • Patent number: 7700376
    Abstract: A retuning process particularly useful with an Ar/H2 smoothing anneal by rapid thermal processing (RTP) of a silicon-on-insulator (SOI) wafer performed after cleavage. The smoothing anneal or other process is optimized including a radial temperature profile accounting for the edge ring and exclusion zone and the vertically structured SOI stack or other wafer gross structure. The optimized smoothing conditions are used to oxidize a bare silicon wafer and a reference thickness profile obtained from it is archived. After extended processing of complexly patterned production wafers, another bare wafer is oxidized and its monitor profile is compared to the reference profile, and the production process is adjusted accordingly. In another aspect, a jet of cooling gas is preferentially directed to the edge ring and peripheral portions of the supported SOI wafer to cool them relative to the inner wafer portions.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Juan Chacin, Sairaju Tallavajula, Sundar Ramamurthy
  • Patent number: 7695567
    Abstract: A chamber passivation method particularly useful for hydrogen plasma cleaning of low-k dielectrics prior to coating a barrier layer into a via hole with hydrogen radicals are provided from a remote plasma source. For each wafer, the chamber is passivated with water vapor (or other gas even more chemabsorbed on plasma facing walls) passed through the remote plasma source prior to the ignition of the hydrogen plasma. The water vapor is absorbed on walls, such as alumina and quartz parts of the remote plasma source, and forms a protective mono-layer that endures sufficiently long to protect the walls during the generation of the hydrogen plasma. Thereby, the plasma facing walls, particularly of a dielectric such as alumina, are protected from etching.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Xinyu Fu
  • Patent number: 7696549
    Abstract: A functional perovskite cell formed on a silicon substrate layer and including a functional layer of bismuth ferrite (BiFeO3 or BFO) sandwiched between two electrode layers. An optional intermediate template layer, for example, of strontium titanate allows the bismuth ferrite layer to be crystallographically aligned with the silicon substrate layer. Other barrier layers of platinum or an intermetallic alloy produce a polycrystalline BFO layer. The cell may be configured as a non-volatile memory cell or a MEMS structure respectively depending upon the ferroelectric and piezoelectric character of BFO. Lanthanum substitution in the BFO increases ferroelectric performance. The films may be grown by MOCVD using a heated vaporizer.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: April 13, 2010
    Assignee: University of Maryland
    Inventor: Ramamoorthy Ramesh
  • Patent number: 7686928
    Abstract: A dual magnetron for plasma sputtering in which two distinctly different magnetrons are mounted on a common plate rotating about a central axis in back of a target. At least one of the magnetrons is switched on and off by changes in chamber pressure or target power while the other magnetron, if it does switch, switches in complementary fashion. When the two magnetrons are mounted at different radii, the switching effects a effective movement of the magnetron such that different areas of the target are exposed to a sputtering plasma. In particular, a small unbalanced magnetron may scan the target edge to produce a highly ionized sputter flux and a larger magnetron positioned near the center can be switched on to clean sputter material redeposited on the target center.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 30, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Tza-Jing Gung
  • Patent number: 7686926
    Abstract: A multi-step process performed in a plasma sputter chamber including sputter deposition from the target and argon sputter etching of the substrate. The chamber includes a quadruple electromagnetic coil array coaxially arranged in a rectangular array about a chamber axis outside the sidewalls of a plasma sputter reactor in back of an RF coil within the chamber. The coil currents can be separately controlled to produce different magnetic field distributions, for example, between a sputter deposition mode in which the sputter target is powered to sputter target material onto a wafer and a sputter etch mode in which the RF coil supports the argon sputtering plasma. A TaN/Ta barrier is first sputter deposited with high target power and wafer bias. Argon etching is performed with even higher wafer bias. A flash step is applied with reduced target power and wafer bias.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 30, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Xinyu Fu, Arvind Sundarrajan, Edward P. Hammond, IV, Praburam Gopalraja, John C. Forster, Mark A. Perrin, Andrew S. Gillard
  • Patent number: 7674360
    Abstract: A lift mechanism for and a corresponding use of a magnetron in a plasma sputter reactor. A magnetron rotating about the target axis is controllably lifted away from the back of the target to compensate for sputter erosion, thereby maintaining a constant magnetic field and resultant plasma density at the sputtered surface, which is particularly important for stable operation with a small magnetron, for example, one executing circular or planetary motion about the target axis. The lift mechanism can include a lead screw axially fixed to the magnetron support shaft and a lead nut engaged therewith to raise the magnetron as the lead nut is turned. Alternatively, the support shaft is axially fixed to a vertically moving slider. The amount of lift may be controlled according a recipe based on accumulated power applied to the target or by monitoring electrical characteristics of the target.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ilyoung Richard Hong, Donny Young, Michael Rosenstein, Robert B. Lowrance, Daniel C. Lubben, Michael Andrew Miller, Peijun Ding, Sreekrishnan Sankaranarayan, Goichi Yoshidome
  • Patent number: 7659204
    Abstract: A method and resultant produce of forming barrier layer based on ruthenium tantalum in a via or other vertical interconnect structure through a dielectric layer in a multi-level metallization. The RuTa layer in a RuTa/RuTaN bilayer, which may form discontinuous islands, is actively oxidized, preferably in an oxygen plasma, to thereby bridge the gaps between the islands. Alternatively, ruthenium tantalum oxide is reactive sputtered onto the RuTaN or directly onto the underlying dielectric by plasma sputtering a RuTa target in the presence of oxygen.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xianmin Tang, Hua Chung, Rongjun Wang, Praburam Gopalraja, Jick M. Yu, Jenn Yue Wang
  • Patent number: 7618521
    Abstract: A split magnet ring, particularly useful in a magnetron plasma reactor sputter depositing tantalum or tungsten or other barrier metal into a via and also resputter etching the deposited material from the bottom of the via onto the via sidewalls. The magnet ring includes two annular magnet rings composed of the same axial polarity separated by a non-magnetic spacing of at least the axial length of one magnet and associated poles. A small unbalanced magnetrons rotates about the back of the target having an outer pole of the same polarity as the ring magnets surrounding a weaker inner pole of the opposite pole.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 17, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Xinyu Fu