Patents Represented by Attorney Chris D. Pylant
  • Patent number: 5418114
    Abstract: A mercury cadmium telluride (MCT) substrate 30 is immersed in a liquid 34 (e.g. 0.1 molar concentration hydrochloric acid) and illuminated with collimated radiation 24 (e.g. collimated visible/ultraviolet radiation) produced by a radiation source 20 (e.g. a 150 Watt mercury xenon arc lamp). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the MCT substrate 30. An etch mask 32 may be positioned between the radiation source 20 and the substrate 30. The MCT substrate 30 and liquid 34 may be maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the MCT is not appreciably etched by the liquid. Upon illumination the etch rate is substantially increased. A further aspect is the addition of a passivant (e.g. iodine) to the liquid which forms a substantially insoluble passivation layer 36 on the substrate which is removed or partially removed by the radiation 24.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: May 23, 1995
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas
  • Patent number: 5400739
    Abstract: A molecular beam epitaxy (MBE) system (10) is provided to grow thin film, epitaxy layers (44, 46, 48, 50) on compound semiconductor substrates (40). A mass spectrometer detector (95) is used to monitor and control the flux from selected sources (21, 23, 25, 27) within the MBE system (10). A uniform layer of indium gallium arsenide (46, 50) may be grown on a semiconductor substrate (40) by controlling the indium flux with respect to substrate (40) temperature and time. An epitaxy layer (46) of indium gallium arsenide with uniform mole fraction concentration and reduced lattice strain is produced.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: March 28, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Yung-Chung Kao, Francis G. Celii
  • Patent number: 5374330
    Abstract: A barium strontium titanate substrate 34 immersed in a liquid ambient (e.g. 12 molar concentration hydrochloric acid 30) and illuminated with radiation (e.g. collimated visible/ultraviolet radiation 24) produced by a radiation source (e.g. a 200 Watt mercury xenon arc lamp 20). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the titanate substrate 34. An etch mask 32 may be positioned between the radiation source 20 and the substrate 34. The titanate substrate 34 and liquid ambient 30 are maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the titanate is not appreciably etched by the liquid ambient. Upon illumination, however, the etch rate is substantially increased.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: December 20, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas
  • Patent number: 5320934
    Abstract: In a process for creating a mask on the surface of an integrated circuit workpiece, a first layer of resist is applied to the surface of the workpiece. An upper portion of this first layer is metallized. A second layer of photoresist is applied to the first layer. The second layer of photoresist is selectively exposed and developed. Using the developed second layer as a mask, exposed respective areas of the metallized upper portion of the first layer are etched, and the non-metallized portions of the first layer are subsequently etched. The result is a metallized mask on the surface of the workpiece that avoids the problems of high topographical relief and irradiation reflections from the workpiece surface.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: June 14, 1994
    Inventors: George R. Misium, Charles B. Dobson
  • Patent number: 5312516
    Abstract: A tantalum pentoxide substrate 34 immersed in a liquid ambient (e.g. 10% hydrofluoric acid 30) and illuminated with radiation (e.g. collimated visible/ultraviolet radiation 24) produced by a radiation source (e.g. a 200 Watt mercury xenon arc lamp 20). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the Ta.sub.2 O.sub.5 substrate 34. An etch mask (e.g. organic photoresist 32) may be positioned between the radiation source 20 and the substrate 34. The Ta.sub.2 O.sub.5 substrate 34 and liquid ambient 30 are maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the Ta.sub.2 O.sub.5 is not appreciably etched by the liquid ambient. Upon illumination the etch rate is substantially increased.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: May 17, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Monte A. Douglas, Howard R. Beratan, Scott R. Summerfelt
  • Patent number: 5279702
    Abstract: A copper substrate 30 is immersed in a liquid 34 (e.g. 0.1 molar concentration hydrochloric acid) and illuminated with collimated radiation 24 (e.g. collimated visible/ultraviolet radiation) produced by a radiation source 20 (e.g. a 200 Watt mercury xenon arc lamp). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the copper substrate 30. An etch mask 32 may be positioned between the radiation source 20 and the substrate 30 (preferably the mask is also in the liquid). The copper substrate 30 and liquid 34 may be maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the copper is not appreciably etched by the liquid. Upon illumination the etch rate is substantially increased. A further aspect is the addition of a passivant (e.g. iodine) to the liquid which forms a substantially insoluble passivation layer 36 on the substrate which is removed or partially removed by the radiation 24.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: January 18, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas
  • Patent number: 5262361
    Abstract: A method for forming single crystal aluminum films 14 on the surface of a substrate 12 (e.g. silicon {111} or Si{111}) is presented, comprising the steps of cleaning the substrate, then maintaining the substrate at certain temperature and pressure conditions while electrically neutral aluminum is deposited by a vacuum evaporation technique. Novel structures wherein single crystal aluminum contacts 20 fill via holes 18 in insulating layers 16 are presented. Novel structures wherein a single crystal aluminum film 14 exists on a substrate comprised of more than one crystalline material 12, 22 are presented.
    Type: Grant
    Filed: January 7, 1992
    Date of Patent: November 16, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Chih-Chen Cho, Bruce E. Gnade
  • Patent number: 5238529
    Abstract: A metal oxide substrate (e.g. barium strontium titanate 34) is immersed in a liquid ambient (e.g. 12 molar concentration hydrochloric acid 30) and illuminated with radiation (e.g. collimated visible/ultraviolet radiation 24) produced by a radiation source (e.g. a 200 Watt mercury zenon arc lamp 20). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the metal oxide substrate 34. An etch mask 32 may be positioned between the radiation source 20 and the substrate 34. The metal oxide substrate 34 and liquid ambient 30 are maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the metal oxide is not appreciably etched by the liquid ambient. Upon illumination the etch rate is substantially increased.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: August 24, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas
  • Patent number: 5238530
    Abstract: A titanate substrate (e.g. lead zirconate titanate 34) is immersed in a liquid ambient (e.g. 12 molar concentration hydrochloric acid 30) and illuminated with radiation (e.g. collimated visible/ultraviolet radiation 24) produced by a radiation source (e.g. a 200 Watt mercury xenon arc lamp 20). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the titanate substrate 34. An etch mask 32 may be positioned between the radiation source 20 and the substrate 34. The titanate substrate 34 and liquid ambient 30 are maintained at a nominal temperature (e.g. 25.degree. C.). Without illumination, the titanate is not appreciably etched by the liquid ambient. Upon illumination the etch rate is substantially increased.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: August 24, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Monte A. Douglas, Howard R. Beratan, Scott R. Summerfelt
  • Patent number: 5234848
    Abstract: A lateral resonant tunneling transistor is provided comprising heterojunction barriers (24) and a quantized region (33). Current between source contact (26) and drain contact (28) can be switched "ON" or "OFF" by placing an appropriate voltage on gate contacts (30) and (32). The potential on gate contacts (30) and (32) selectively modulate the quantum states within quantized region (33) so as to allow electrons to tunnel through heterojunction barrier (24) and quantized region (33). The method for fabricating comprises etching trenches through second barrier layer (20) and quantum layer (76) and regrowing a semiconductor to form heterojunction barrier (24).
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: August 10, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Alan C. Seabaugh
  • Patent number: 5231055
    Abstract: A process for forming a smooth conformal refractory metal film on an insulating layer having a via formed therein. This process provides extremely good planarity and step coverage when used to form contacts in semiconductor circuits and, in addition, offers improved wafer alignment capability as well as enhanced reliability which result from the smooth surface morphology. The process includes forming contact openings through an insulating layer to a semiconductor substrate; depositing a first blanket layer of titanium using deposition conditions that provide a conformal film that exhibits good step coverage at the contact opening; and forming a second blanket layer of titanium using deposition conditions that provide reduced surface asperity height. The process is ideally suited to forming an electrical interconnection system for semiconductor integrated circuit devices such as static or dynamic random access memories and is particularly useful in VLSI devices that incorporate multiple levels of interconnect.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: July 27, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Gregory C. Smith
  • Patent number: 5229324
    Abstract: A method for making an adhesive ohmic contact to a p-type semiconductor metal substrate or layer (10) comprises tin and lead. The contact preferably includes a tin/lead film (24) approximately 2000 .ANG. in thickness. The p-type semiconductor compound contains mercury and, while described in conjunction with Hg.sub.1-x Cd.sub.x Te, other elements exhibiting group II and group VI chemical behavior and properties may be used A cap layer (30) is deposited over film (24), followed by insulating layer (32). Via (34) is then formed and, to complete contact (50), a metal (36) is deposited inside via (34).
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: July 20, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Arthur M. Turner, Arturo Simmons
  • Patent number: 5225702
    Abstract: A first silicon controlled rectifier structure (220) is provided for electrostatic discharge protection, comprising a lightly doped semiconductor layer (222) having a first conductivity type and a face. A lightly doped region (224) having a second conductivity type opposite the first conductivity type is formed in the semiconductor layer (222) at the face. A first heavily doped region (226) having the second conductivity type is formed laterally within the semiconductor layer (222) at the face and is electrically coupled to a first node (62). A second heavily doped region (230) having the second conductivity type is formed laterally within the lightly doped region (224) and is electrically coupled to a second node (58). A third heavily doped region (228) having the first conductivity type is formed laterally within the lightly doped region (224) to be interposed between the first and second heavily doped regions (226 and 230) and is electrically coupled to the second node (58).
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: July 6, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee