Abstract: An implantable medical device (IMD) including an input interface that operates to receive an external input and a stimulation mode controller coupled to the input interface. The stimulation mode controller operates to temporarily interrupt a normal stimulation mode of the IMD in response to the external input. The IMD also includes an alternative stimulation selection module coupled to the stimulation mode controller, the alternative stimulation selection module operating to determine whether to implement an alternative mode of electrical signal therapy based on the external input and a threshold. The alternative mode differs in at least one stimulation parameter from the normal stimulation mode. The stimulation mode controller further operates to implement the alternative mode of the electrical signal therapy based on the determination of the alternative stimulation selection module.
Abstract: An electrode assembly includes an electrode adapted to at least partially surround a first longitudinal portion of a target nerve or nerve bundle. The electrode includes an inner surface adapted to contact an outer surface of the target nerve or nerve bundle. The electrode also includes a plurality of fiber elements each having a proximal end and a distal end. The fiber elements are coupled at the proximal ends to the inner surface of the electrode and the distal ends of the fiber elements are operative to penetrate the outer surface of the target nerve or nerve bundle.
Abstract: We disclose a method, apparatus, and system of treating a medical condition in a patient using an implantable medical device. A first electrode is coupled to a first portion of a cranial nerve of the patient. A second electrode is coupled to a second portion of the cranial nerve of the patient. A first electrical signal is provided to the first and second electrodes. The first electrical signal is provided in a first polarity configuration in which the first electrode functions as an anode and the second electrode functions as a cathode. Upon termination of the first electrical signal, the anode and cathode each comprise a first accumulated energy. A second electrical signal is provided to the first and second electrodes, in which the second electrical signal includes at least a portion of the first accumulated energy.
Type:
Grant
Filed:
January 25, 2008
Date of Patent:
September 4, 2012
Assignee:
Cyberonics, Inc.
Inventors:
Randolph K. Armstrong, Steven E. Maschino, Timothy L. Scott
Abstract: Disclosed herein are methods, systems, and apparatus for treating a chronic medical condition in a patient. A time of beat sequence of the patient's heart is determined. A regulatory system parameter is determined based on the time of beat sequence. The parameter is indicative of a stress level of the patient's regulatory adaptation systems. The determined regulatory system parameter is compared with a threshold regulatory system parameter value. An electrical signal is applied to a neural structure of the patient to treat the chronic medical condition if the determined regulatory system parameter exceeds the threshold regulatory system parameter value.
Abstract: An implantable medical device (IMD) to treat a medical condition in a patient comprises an electrical signal generator; a cathode and an anode operatively coupled to the electrical signal generator and a cranial nerve of the patient; and a third electrode operatively coupled to the electrical signal generator and implanted within the patient's body; wherein the electrical signal generator is capable of generating and delivering at least one electrical signal effective at the anode to block at least a sufficient portion of action potentials induced by the at least one electrical signal in the cranial nerve proximate the cathode to reduce a side effect of said induced action potentials.
Abstract: A method, system, and apparatus for performing a lead condition assessment and/or a lead orientation determination associated with an implantable medical device (IMD). A first impedance is determined. The first impedance relates to the impedance relative to a first electrode and a portion of the IMD. A second impedance is determined. The second impedance relates to the impedance relative to a second electrode and the portion of the IMD. The first impedance is compared with the second impedance to determine an impedance difference. A determination is made whether the impedance difference is outside a predetermined tolerance range. Furthermore, artifact measured during impedance measurements or test pulses may be compared to assess lead orientation. An indication of a lead condition error is provided in response to determining that the impedance difference is outside the predetermined tolerance range.
Abstract: Disclosed herein are methods, systems, and apparatus for detecting an epilepsy event in a patient using a medical device. The medical device is capable of determining an occurring epilepsy event, for example a seizure or an increased risk of a seizure. The determination is performed by determining at least one nonlinear analysis parameter associated with the beat sequence of the patient's heart. The medical device may then take a responsive action, such as warning, logging the time of the seizure, computing and storing one or more seizure severity indices, and treating the epilepsy event.