Patents Represented by Attorney David G. Dolezal
  • Patent number: 8349684
    Abstract: A semiconductor device including a control terminal sidewall spacer structure made of a high-K dielectric material. The semiconductor device includes a control terminal where the spacer structure is a sidewall spacer structure for the control terminal. The semiconductor device includes current terminal regions located in a substrate. In some examples, the spacer structure has a height that is less than the height of the control terminal. In some examples, the spacer structure includes portions located over the regions of the substrate between the first current terminal region and the second current terminal region.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 8, 2013
    Assignees: Freescale Semiconductor, Inc., International Business Machines Corporation
    Inventors: Jin Cai, Amlan Majumdar, Ramachandran Muralidhar, Ghavam G. Shahidi
  • Patent number: 8309410
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 13, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Daniel T. Pham, Bich-Yen Nguyen
  • Patent number: 8304331
    Abstract: Angled ion implants are utilized to form doped regions in a semiconductor pillar formed in an opening of a mask. The pillar is formed to a height less than the height of the mask. Angled ion implantation can be used to form regions of a semiconductor device such as a body tie region, a halo region, or current terminal extension region of a semiconductor device implemented with the semiconductor pillar.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: November 6, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Mark D. Hall
  • Patent number: 8281188
    Abstract: In a data processing system including a first master operably coupled to a peripheral bus interface and a plurality of peripherals operably coupled to the peripheral bus interface, wherein the first master communicates with each of the plurality of peripherals via the peripheral bus interface, a method includes initiating a write, by the first master, of configuration information to a first peripheral of the plurality of peripherals. In response to initiating the write, the configuration information is provided via the peripheral bus interface for storage into the first peripheral, wherein a first error syndrome of the configuration information is generated by the peripheral bus interface. The provided configuration information is stored in the first peripheral, and the first error syndrome is stored in storage circuitry of the peripheral bus interface. The first error syndrome can be used to check the integrity of configuration information during subsequent error checking.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: October 2, 2012
    Inventor: Gary L. Miller
  • Patent number: 8266498
    Abstract: A cache includes a plurality of cache lines, where each cache line includes a detection type field, corresponding cache data field, a detection field, and a corresponding tag field. The detection type field indicates an error detection scheme from a plurality of error detection schemes currently in use for the corresponding cache data field. One example of an error detection scheme is a multiple bit error detection scheme (e.g. an error detection coding (EDC) or an error correction coding (ECC)). Another type is a single bit error detection scheme (e.g. parity error detection). The detection bits field stores parity bits if parity error detection is used. The detection bits field stores checking bits if EDC coding is used.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: William C. Moyer
  • Patent number: 8260151
    Abstract: An integrated circuit die has a transistor circuitry section for implementing information handling operations. Optical circuitry is within the single semiconductor die. The optical circuitry includes a laser transmitter and is operably coupled to the transistor circuitry section. The transistor circuitry section originates information. The optical circuitry transmits the information in a laser beam through a wave guide to the edge of the integrated circuit die.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 4, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Perry H. Pelley, Dennis C. Hartman
  • Patent number: 8248288
    Abstract: An analog to digital converter has an input circuit, a computation circuit, an initialization circuit, and an output circuit. The input circuit is for receiving an analog signal and has a pair of outputs. A computation circuit has a pair of inputs coupled to the pair of outputs. The computation circuit has an amplifier having a pair of complementary outputs (Outp, Outn). The initialization circuit is coupled to the complementary outputs and is for biasing the complementary outputs at a time prior to the computation circuit beginning a computation on the analog signal. The output circuit is coupled to the pair of complementary outputs and provides a digital signal.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 21, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Juxiang Ren, Robert S. Jones
  • Patent number: 8228109
    Abstract: A transmission gate circuit includes a first transmission gate, having a first switching device, coupled in series with a second transmission gate, having a second switching device, and control circuitry which places the first transmission gate and the second transmission gate into a conductive state to provide a conductive path through the first transmission gate and the second transmission gate. When the voltage of the first terminal is above a first voltage level and outside a safe operating voltage area of at least one of the first and second switching device, the first switching device remains within its safe operating voltage area and the second switching device remains within its safe operating voltage area.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 24, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael A. Stockinger, Jose A. Camarena, Wenzhong Zhang
  • Patent number: 8138062
    Abstract: A method for electrically coupling a first wafer with a second wafer is provided. The method includes bonding the first wafer with the second wafer using a bonding material. The method further includes forming an opening in the first wafer in a scribe area of the second wafer to expose a surface of a conductive structure of the second wafer. The method further includes forming a conductive layer overlying the first wafer and the opening in the first wafer such that the conductive layer forms an electrical contact with the conductive structure of the second wafer thereby electrically coupling the first wafer with the second wafer.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 20, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lianjun Liu, Lisa H. Karlin, Alan J. Magnus
  • Patent number: 8131316
    Abstract: A cellular mobile station including a modem processor and memory. The memory includes instructions for the modem processor to perform layer 1 processor operations, layer 2 processor operations, and layer 3 processor operations. The modem processor executes the instructions to perform processor operations for the cellular mobile station to communication data as per a cellular communications protocol. In one example, the mobile station includes different levels of memory to provide different deterministic access times.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John J. Vaglica, Christopher K. Y. Chun, Jose G. Corleto-Mena, Arnaldo R. Cruz, Jianping Tao, Mieu V. Vu, Mark E. Elledge, Charbel Khawand, Arthur M. Goldberg, David J. Hayes
  • Patent number: 8120660
    Abstract: Forming image information of image units (e.g. pixels) of a higher resolution by convoluting information of image units of a lower resolution with coefficients of a multiphase filter. The information of one set of higher resolution image units is formed by convoluting in a first direction the information of the lower resolution image units with a first set of four coefficients. The information of a second set of higher resolution image units is form by convoluting in the first direction the information of the lower resolution image units with a second set of four coefficients. Convolution may also be performed in a second direction with a set of four coefficients. In one example, the image information formed includes intensity information for each image unit.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: February 21, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Yong Yan
  • Patent number: 8097873
    Abstract: A phase change memory cell has a first electrode, a plurality of pillars, and a second electrode. The plurality of pillars are electrically coupled with the first electrode. Each of the pillars comprises a phase change material portion and a heater material portion. The second electrode is electrically coupled to each of the pillars. In some examples, the pillars have a width less than 20 nanometers.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 17, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ramachandran Muralidhar, Tushar P. Merchant, Rajesh A. Rao
  • Patent number: 8097494
    Abstract: Electromagnetic shielding for an integrated circuit packaged device. The method includes forming shielding structures by forming openings in an encapsulated structure. The openings are filled with conductive material that surrounds at least one die. The encapsulated structure may include a plurality of integrated circuit die. A layered redistribution structure is formed on one side of the encapsulated structure.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 17, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jinbang Tang, Darrel Frear, Jong-Kai Lin, Marc A. Mangrum, Robert E. Booth, Lawrence N. Herr, Kenneth R. Burch
  • Patent number: 8064329
    Abstract: A method of transmitting data information and control information is provided. The method includes encoding the control information and encoding the data information. The method further includes modulating the control information and modulating the data information. The method further includes spreading the modulated control information using a spreading code to generate spread control information. The method further includes superimposing the spread control information with the modulated data information. The method further includes transmitting the modulated data information with the superimposed spread control information.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ning Chen, James W. McCoy
  • Patent number: 8058143
    Abstract: A method that in one embodiment is useful in bonding a first substrate to a second substrate includes forming a layer including metal over the first substrate. The layer including metal in one embodiment surrounds a semiconductor device, which can be a micro electromechanical system (MEMS) device. On the second substrate is formed a first layer comprising silicon. A second layer comprising germanium and silicon is formed on the first layer. A third layer comprising germanium is formed on the second layer. The third layer is brought into contact with the layer including metal. Heat (and pressure in some embodiments) is applied to the third layer and the layer including metal to form a mechanical bond material between the first substrate and the second substrate in which the mechanical bond material is electrically conductive. In the case of the mechanical bond surrounding a semiconductor device such as a MEMS, the mechanical bond can be particularly advantageous as a hermetic seal for protecting the MEMS.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 15, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B. Montez, Alex P. Pamatat
  • Patent number: 8039339
    Abstract: A semiconductor device is formed. A first gate dielectric layer is formed over the semiconductor layer. A first conductive layer is formed over the first gate dielectric. A first separation layer is formed over the first conductive layer. A trench is formed in the semiconductor layer to separate the first mesa and the second mesa. The trench is filled with an isolation material to a height above a top surface of the first conductive layer. The first conductive layer is removed from the second mesa. A second conductive layer is formed over the first separation layer of the first mesa and over the second mesa. A planarizing etch removes the second conductive layer from over the first mesa. A first transistor of a first type is formed in the first mesa, and a second transistor of a second type is formed in the second mesa.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John M. Grant, Srikanth B. Samavedam, Suresh Venkatesan
  • Patent number: 8020017
    Abstract: A method of operating a circuit, including operating in a first mode, wherein in the first mode, a first power domain operates in an active power mode and a second power domain operates in an active power mode, wherein in the first mode, a first set of at least one terminal of a first circuit of the first power domain are coupled to a second set of at least one terminal of a second circuit of the second power mode via an isolation circuit for providing signals from the first circuit to the second circuit, is provided. The method further includes operating the circuit in a second mode, wherein in the second mode, the first power domain operates in a power gated mode and a second power domain operates in an active power mode.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: September 13, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Milind P. Padhye, Noah W. Bamford, Anuj Singhania
  • Patent number: 8014682
    Abstract: A free-space communication system and method of operation includes a first communication device physically coupled to a substrate and having an optical transmitter for communicating information. A second communication device is physically coupled to the substrate and has an optical receiver for communicating information. An adjustable optical beam deflector is physically coupled to the substrate for optically coupling the first communication device and the second communication device via an optical beam including a free-space optical portion. A feedback system includes a non-optical communication link for receiving information regarding the optical beam. The feedback system controls the adjustable optical beam deflector to direct the optical beam to improve the quality of an optical link incorporating the optical beam.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 6, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Perry H. Pelley, Lucio F. C. Pessoa
  • Patent number: 8009489
    Abstract: A memory has a first bit line, a second bit line, and a word line. A memory cell is coupled to the word line and the first and second bit lines. A sense amplifier has a first input, a second input, a first output, and a second output. A pair of coupling transistors includes a first transistor and a second transistor. In one embodiment, the first transistor is coupled between the first bit line and the first input of the sense amplifier and the second transistor is coupled between the second bit line and the second input of the sense amplifier. A write back circuit is coupled to an output of the sense amplifier. The write back circuit writes back to the memory cell a value read from the memory cell during a read cycle.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: August 30, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Shayan Zhang, Jack M. Higman, Prashant U. Kenkare, Pelley H. Perry, Andrew C. Russell
  • Patent number: 7998822
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 16, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora