Patents Represented by Attorney Erika Takeuchi
  • Patent number: 8334592
    Abstract: A thermal interface material includes a thermally conductive metal matrix and coarse polymeric particles dispersed therein. The composite can be used for both TIM1 and TIM2 applications in electronic devices.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: December 18, 2012
    Assignee: Dow Corning Corporation
    Inventors: Dorab Bhagwagar, Donald Liles, Nick Shephard, Shengqing Xu, Zuchen Lin, G. M. Fazley Elahee
  • Patent number: 8318244
    Abstract: A method for fabricating electronic devices includes the steps of 1) printing a multi-layer electronic device on a silicone-based hard coating on a substrate, and 2) removing the device from the substrate. The silicone-based hard coating is an abrasion resistant coating with hardness ranging from 1 to 10 gigaPascals.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 27, 2012
    Assignee: Dow Corning Corporation
    Inventors: Michael Brasseur, Karen Hueston, James Tonge
  • Patent number: 8318258
    Abstract: Silsesquioxane resins useful in antireflective coatings wherein the silsesquioxane resin has the formula (PhSiO(3?x)/2(OR?)x)m(HSiO(3?x)/2(OR?)x)n(MeSiO(3?x)/2(OR?)x)o(RSiO(3?x)/2(OR?)x)p(R2SiO(3?x)/2(OR?)x)q where Ph is a phenyl group, Me is a methyl group; R is selected from a sulfur-containing organic functional group; R? is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R2 is selected from ester groups, polyether groups; and polyethylene oxide groups; x has a value of 0, 1 or 2; m has a value of 0.01 to 0.97; n has a value of 0.01 to 0.97; o has a value of 0.01 to 0.97; p has a value of 0.01 to 0.97; q has a value of 0 to 0.96; and m+n+o+p+q?1.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 27, 2012
    Assignee: Dow Corning Toray Co., Ltd.
    Inventor: Akihiko Shirahata
  • Patent number: 8304161
    Abstract: A silsesquioxane resin comprised of the units (Ph(CH2)rSiO(3-x)/2(OR?)x)m, (HSiO(3-x)/2(OR?)x)n?(MeSiO(3-x)/2(OR?)x)o?(RSiO(3-x)/2(OR?)x)p, (R1SiO(3-x)/2(OR?)x)q where Ph is a phenyl group, Me is a methyl group; R? is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R is selected from an aryl sulfonate ester group; and R1 is selected from substituted phenyl groups, ester groups, polyether groups; mercapto groups, and reactive or curable organic functional groups; and r has a value of 0, 1, 2, 3, or 4; x has a value of 0, 1 or 2; wherein in the resin m has a value of 0 to 0.95; n has a value of 0.05 to 0.95; o has a value of 0.05 to 0.95; p has a value of 0.05 to 0.5; q has a value of 0 to 0.5; and m+n+o+p+q=1.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Dow Corning Corporation
    Inventors: Michael L. Bradford, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8263312
    Abstract: Antireflective coatings comprising (i) a silsesquioxane resin having the formula (PhSiO(3-x)/2(OH)x)mHSiO(3-x)/2(OH)x)n(MeSiO(3-x)/2(OH)x)p where Ph is a phenyl group, Me is a methyl group, x has a value of 0, 1 or 2; m has a value of 0.01 to 0.99, n has a value of 0.01 to 0.99, p has a value of 0.01 to 0.99, and m+n+p=1; (ii) a polyethylene oxide fluid; and (iii) a solvent; and a method of forming said antireflective coatings on an electronic device.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: September 11, 2012
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer
  • Patent number: 8258502
    Abstract: A composition includes: (I) an alkenyl functional, phenyl-containing polyorganosiloxane, an Si—H functional phenyl-containing polyorganosiloxane, or a combination thereof; (II) a hydrogendiorganosiloxy terminated oligodiphenylsiloxane having specific molecular weight, an alkenyl-functional, diorganosiloxy-terminated oligodiphenylsiloxane having specific molecular weight, or a combination thereof; and (III) a hydrosilylation catalyst. A light emitting device is made by applying the composition onto a light source followed by curing. The composition provides a cured material with mechanical properties suited for use as an encapsulant for a light emitting device.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: September 4, 2012
    Assignee: Dow Corning Corporation
    Inventors: Makoto Yoshitake, Masashi Murakami, Yoshitsugu Morita, Tomoko Kato, Hiroji Enami, Masayoshi Terada, Brian Harkness, Tammy Cheng, Michelle Cummings, Ann Norris, Malinda Howell
  • Patent number: 8241707
    Abstract: This invention pertains to silsesquioxane resins useful in antireflective coatings wherein the silsesquioxane resin is comprised of the units (Ph(CH2)rSiO(3?x)/2(OR?)x)m (HSiO(3?x)/2(OR?)x)n (MeSiO(3?x)/2(OR?)x)o (RSiO(3?x)/2(OR?)x)p (R1SiO(3?x)/2(OR?)x)q where Ph is a phenyl group, Me is a methyl group; R? is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R is selected from a hydroxyl producing group; and R1 is selected from substituted phenyl groups, ester groups, polyether groups; mercapto groups, and reactive or curable organic functional groups; and r has a value of 0, 1, 2, 3, or 4; x has a value of 0, 1 or 2; wherein in the resin m has a value of 0 to 0.95; n has a value of 0.05 to 0.95; o has a value of 0.05 to 0.95; p has a value of 0.05 to 0.5; q has a value of 0 to 0.5; and m+n+o+p+q?1.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 14, 2012
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer
  • Patent number: 8198207
    Abstract: Borane catalyst complexes with amide functional polymers have a borane portion of the complex that may contain at least one silicon atom. The catalyst complexes can be used as components in curable compositions containing (i) the catalyst complex, (ii) a free radical polymerizable monomer, oligomer or polymer, and optionally (iii) a decomplexer. The curable compositions may contain a component capable of generating a gas, as well as various other optional ingredients. These curable compositions can be used as rubbers, tapes, adhesives, protective coatings, thin films, thermoplastic monolithic molded parts, thermosetting monolithic molded parts, sealants, foams, gaskets, seals, o-rings, pressure sensitive adhesives, die attachment adhesives, lid sealants, encapsulants, potting compounds, conformal coatings, and electronic components.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: June 12, 2012
    Assignee: Dow Corning Corporation
    Inventor: Mustafa Mohamed
  • Patent number: 8168737
    Abstract: A polymer cures by both radiation and moisture curing mechanisms. The polymer is prepared by hydrosilylation. The polymer is useful in adhesive compositions. The polymer includes units of formulae (I), (R22Si02/2)b, (R2Si03/2)c, (Si04/2)d, (R1)f, and (R23SiO1/2)g, where each R1 is independently an oxygen atom or a divalent hydrocarbon group; each R1 is independently divalent hydrocarbon group; each R2 is independently a monovalent organic group that is free of terminal aliphatic unsaturation each X is independently a monovalent hydrolyzable group; each J is independently a monovalent epoxy functional organic group; subscript a has a value of 1 or more; subscript b has a value of 0 or more; subscript c has a value of 0 or more; subscript d has a value of 0 or more; subscript e has a value of 1 or more; subscript f has a value of 0 or more; subscript g has a value of 0 or more; subscript s is 1, 2, or 3; and subscript t is 1, 2, or 3.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 1, 2012
    Assignee: Dow Corning Corporation
    Inventors: Khristopher Edward Alvarez, Nick Evan Shephard, James Tonge
  • Patent number: 8147742
    Abstract: A lithography method includes the steps of: A) filling a mold having a patterned surface with a phase change composition at a temperature above the phase change temperature of the phase change composition; B) hardening the phase change composition to form a patterned feature; C) separating the mold and the patterned feature; optionally D) etching the patterned feature; optionally E) cleaning the mold; and optionally F) repeating steps A) to D) reusing the mold. The PCC may include an organofunctional silicone wax.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: April 3, 2012
    Assignee: Dow Corning Corporation
    Inventors: Wei Chen, Brian Robert Harkness, Joan Sudbury-Holtschlag, Lenin James Petroff
  • Patent number: 8147789
    Abstract: A composition comprising at least 93% (w/w) neopentasilane; and a method of preparing neopentasilane, the method comprising treating a tetrakis-(trihalosilyl)silane with diisobutylaluminum hydride.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: April 3, 2012
    Assignee: Dow Corning Corporation
    Inventors: John Patrick Cannady, Xiaobing Zhou
  • Patent number: 8088547
    Abstract: A resist composition comprising (A) a hydrogen silsesquioxane resin, (B) an acid dissociable group-containing compound, (C) a photo-acid generator, (D) an organic solvent and optionally (E) additives. The resist composition has improved lithographic properties (such as high etch-resistance, transparency, resolution, sensitivity, focus latitude, line edge roughness, and adhesion) suitable as a photoresist.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 3, 2012
    Assignee: Dow Corning Corporation
    Inventors: Sanlin Hu, Sina Maghsoodi, Eric Scott Moyer, Sheng Wang
  • Patent number: 8071697
    Abstract: A process includes the steps of: 1) heating a mold at a temperature ranging from 100° C. to 200° C.; 2) feeding a silicone encapsulant composition including a mold release agent, where the composition has a viscosity ranging from 100 cps to 3,000 cps at operating temperatures of the process, to an assembly for preventing the silicone encapsulant composition from flowing backward out of the assembly; 3) injecting the silicone encapsulant composition from the assembly into a mold having a horizontal orientation and having a mold cavity through a gate, where the mold cavity has a top and a bottom, a vent is located at the top of the mold cavity, the vent comprises a channel 0.1 mm to 1 mm wide by 0.0001 mm to 0.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: December 6, 2011
    Assignee: Dow Corning Corporation
    Inventors: Lawrence Frisch, Maneesh Bahadur, Ann Norris
  • Patent number: 8064203
    Abstract: A free standing film includes: i. a matrix layer having opposing surfaces, and ii. an array of nanorods, where the nanorods are oriented to pass through the matrix layer and protrude an average distance of at least 1 micrometer through one or both surfaces of the matrix layer. A method for preparing the free standing film includes (a) providing an array of nanorods on a substrate, optionally (b) infiltrating the array with a sacrificial layer, (c) infiltrating the array with a matrix layer, thereby producing an infiltrated array, optionally (d) removing the sacrificial layer without removing the matrix layer, when step (b) is present, and (e) removing the infiltrated array from the substrate to form the free standing film. The free standing film is useful as an optical filter, ACF, or TIM, depending on the type and density of nanorods selected.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: November 22, 2011
    Assignee: Dow Corning Corporation
    Inventors: Carl Fairbank, Mark Fisher
  • Patent number: 8025927
    Abstract: A method of forming an antireflective coating on an electronic device comprising (A) applying to an electronic device an ARC composition comprising (i) a silsesquioxane resin having the formula (PhSiO(3-X)/2(OH)x)mHSiO(3-x)/2(OH)x)N(MeSiO(3-x)/2(OH)x)p where Ph is a phenyl group, Me is a methyl group, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, and m+n+p?1; and (ii) a solvent; and (B) removing the solvent and curing the silsesquioxane resin to form an antireflective coating on the electronic device.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: September 27, 2011
    Assignee: Dow Corning Corporation
    Inventors: Peng-Fei Fu, Eric Scott Moyer, Craig Rollin Yeakle
  • Patent number: 8017449
    Abstract: A process for fabricating an electronic component includes a liquid injection molding method for overmolding a semiconductor device. The liquid injection molding method includes: i) placing the semiconductor device in an open mold, ii) closing the mold to form a mold cavity, iii) heating the mold cavity, iv) injection molding a curable liquid into the mold cavity to overmold the semiconductor device, v) opening the mold and removing the product of step iv), and optionally vi) post-curing the product of step v). The semiconductor device may have an integrated circuit attached to a substrate through a die attach adhesive.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: September 13, 2011
    Assignee: Dow Corning Corporation
    Inventors: Tammy Cheng, Mark Dobrzelewski, Daniel Solomon, Christopher Windiate
  • Patent number: 7956150
    Abstract: A composition includes: (A) an amide-substituted silicone and (B) a thermally conductive filler. The composition may be used as a thermal interface material for dissipating heat from electronic devices.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: June 7, 2011
    Assignee: Dow Corning Corporation
    Inventors: Zuchen Lin, Bianxiao Zhong
  • Patent number: 7928174
    Abstract: Organosilicon functional boron amine catalyst complexes have an organosilicon functional organoborane portion of the complex that contains at least one silicon atom. The complexes can be used as components in curable compositions containing (i) a free radical polymerizable monomer, oligomer or polymer; (ii) the organosilicon functional boron amine catalyst complex; and (iii) an amine reactive compound having amine reactive groups. The curable compositions may contain a component capable of generating a gas, as well as various other optional ingredients. These curable compositions can be used as rubbers, tapes, adhesives, protective coatings, thin films, thermoplastic monolithic molded parts, thermosetting monolithic molded parts, sealants, foams, gaskets, seals, o-rings, pressure sensitive adhesives, die attachment adhesives, lid sealants, encapsulants, potting compounds, conformal coatings, and electronic components.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 19, 2011
    Assignee: Dow Corning Corporation
    Inventors: Dongchan Ahn, Mohamed Mustafa, Patricia Olney