Patents Represented by Attorney F. A. Wilson
  • Patent number: 5338315
    Abstract: A device for use by a person wearing a colostomy, ileostomy or ureterostomy bag which protects the bag from binding by clothes and being noticed as readily by others. The device is a semirigid guard worn by the person below the stoma at the level of his or her waistband or belt line. The inner portion of the guard conforms to fit snugly and comfortably against the person's body. The outer portion of the guard is semirigid and curved to permit the waistband of the person's clothing to fit smoothly around the guard. The inner and outer portions may be separate pieces, removably attached to one another, as with hook and loop fasteners. Between the inner and outer portions of the guard is an opening through which the bag hangs freely. The outer portion may extend up to a level so that it covers and protects the stoma.
    Type: Grant
    Filed: April 28, 1992
    Date of Patent: August 16, 1994
    Inventor: Freddie R. Baker
  • Patent number: 5282638
    Abstract: A device for converting power or hand drills to drive sockets. The cylinder of the device attaches to the drill in place of the chuck, or, with an adaptor, as a bit would fit in the chuck. The cylinder also houses the known, toothed gear assembly which drives the socket. The cylinder is surrounded by a slidable ring and pierced by a push rod attached to opposite sides of the ring. The ring and push rod are pushed forward, and the push rod activates the release mechanism of the gear assembly.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: February 1, 1994
    Inventor: David L. Harper
  • Patent number: 5230122
    Abstract: A mounting device for hanging window shades hinged along its length, and its opposite edge clamping the top margin of material of the shades in place. A series of channels on the bottom of the mounting device extend the length of the mounting device. Cord guides are suspended below the mounting device and are slidably attached to the mounting device in the channels. The cord guides can be moved to the desired locations on the mounting device and secured in place. The mounting device is attached to the wall with brackets into which the ends of the mounting device are seated.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: July 27, 1993
    Inventor: Lana Robinson
  • Patent number: 5156499
    Abstract: An air lock for injecting a fibrous or granular material, such as insulation, into an airstream. The air lock has two counter-rotating, generally cylindrical rollers in facing contact with each other along their edges, made of a resilient material such as a closed cell foam. The rollers are also in facing contact with the outside of a tube or cylinder through which the airstream flows. The insulation is positioned on top of the rollers, and the rollers feed the insulation between them and into the airstream. The contact between the rollers and between the rollers and the injection tube create the air lock between the airstream and the atmosphere. The invention can also be used in a vacuum machine, particularly suited for vacuuming and collecting fibrous or granular materials.
    Type: Grant
    Filed: March 19, 1991
    Date of Patent: October 20, 1992
    Inventor: Henry A. Miklich
  • Patent number: 4457831
    Abstract: A two-stage catalytic hydroconversion process for heavy hydrocarbon feedstocks usually containing fine particulate solids to produce lower boiling hydrocarbon liquid and gas products. The feedstock is fed into a first stage ebullated bed reactor containing fine sized catalyst and operated at moderate reaction conditions for hydroconversion to produce hydrocarbon gas and liquid fractions, from which a low boiling liquid fraction is separated and withdrawn as a product. The remaining gas and heavier liquid fractions are recombined and fed to a second stage ebullated bed reactor containing larger size catalyst for further hydroconversion reactions at less severe conditions to produce lower boiling hydrocarbon liquid fractions. Following product distillation steps, liquid product fractions are withdrawn and a portion of vacuum bottoms material is recycled to the second stage reactor to provide increased hydroconversion and improved yields of the light hydrocarbon liquid product.
    Type: Grant
    Filed: August 18, 1982
    Date of Patent: July 3, 1984
    Assignee: HRI, Inc.
    Inventor: Jeffrey L. Gendler
  • Patent number: 4443330
    Abstract: An improved process for upgrading a coal liquid where the coal liquid is catalytically converted by hydrogenating and hydrocracking. In the process of upgrading a coal liquid where the coal liquid is fed with hydrogen into a catalytic reactor, the improvement comprises the feeding of a sulfur-containing liquid with the coal liquid. The sulfur-containing liquid ranges from about 0.2 to about 2.0 weight percent of the coal liquid feed. The sulfur-containing liquid is a high boiling hydrocarbon sulfur compound of the formula RSR.sub.1, where R is an alkyl group having 2 to 20 carbon atoms or a phenyl group and R.sub.1 is H, an alkyl group having 2 to 20 carbon atoms or a phenyl group.
    Type: Grant
    Filed: June 1, 1981
    Date of Patent: April 17, 1984
    Assignee: HRI, Inc.
    Inventor: Govanon Nongbri
  • Patent number: 4433184
    Abstract: Monosaccharides, such as glucose-water solution, are catalytically hydrogenated by being passed through multiple reaction zones connected in series and each containing a high-activity supported nickel catalyst to produce 99.8 W % overall conversion to an alditol solution such as sorbitol. The pH of liquid in each reaction zone is controlled to between 4.5 and 7 by adding an alkali solution such as sodium hydroxide to the feed to prevent acid leaching of catalyst metal and to help maintain catalyst activity therein. Reaction zone conditions used are 130.degree.-180.degree. C. temperature, 500-2000 psig hydrogen partial pressure, and a ratio of hydrogen gas/feed liquid within the range of about 500-5000. Feedstream liquid space velocity is maintained within range of 0.5-16 V.sub.f /Hr/V.sub.c, with higher space velocities being used for achieving lower incremental conversion desired in the subsequent reaction zones to help maintain pH of the effluent liquid within the desired range.
    Type: Grant
    Filed: April 27, 1981
    Date of Patent: February 21, 1984
    Assignee: HRI, Inc.
    Inventors: Derk T. A. Huibers, James C. Chao, Rajni C. Shah
  • Patent number: 4427535
    Abstract: A process for the catalytic hydroconversion of special petroleum feedstocks, containing 10-28 W % asphaltenes, and having Ramsbottom carbon residue of 12-35 W %, such as Cold Lake and Lloydminster crude and residua materials. In the process, high percentage conversion (65-80 V %) to lower boiling hydrocarbon products can be achieved by maintaining a narrow range of reaction conditions, preferably in an ebullated bed catalytic reactor. Reaction temperature is 780.degree.-835.degree. F., hydrogen partial pressure is 2000-3000 psig, and space velocity is 0.25-5.0 V.sub.f /hr/V.sub.r. Higher conversion of about 80 to 95 volume percent can be obtained with recycle of 975.degree. F..sup.+ vacuum bottoms fraction to the reactor. Useful catalysts have total pore volume of about 0.5-0.9 cc/gm and include cobalt-molybdenum and nickel-molybdenum on alumina support.
    Type: Grant
    Filed: November 2, 1981
    Date of Patent: January 24, 1984
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Govanon Nongbri, Susan M. Brandt, Michael C. Chervenak
  • Patent number: 4424109
    Abstract: An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores.
    Type: Grant
    Filed: April 7, 1981
    Date of Patent: January 3, 1984
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Derk T. A. Huibers, Chia-Chen C. Kang
  • Patent number: 4420644
    Abstract: A lignin-containing feed material in particulate form is mixed with a process-derived slurrying oil and fed into an ebullated catalyst bed hydrocracking reactor. Reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 500-2500 psig hydrogen partial pressure and space velocity of 1.0-10 wt. lignin/hr./wt. catalyst. The reaction products are phase separated to recover hydrogen and slurrying oil, and the resulting liquid stream is passed to a thermal hydrodealkylation step. The reacted stream is fractionated to produce phenol and benzene products, along with a heavy alkylated material which is recycled to the hydrodealkylation step to increase the yield of phenol and benzene.
    Type: Grant
    Filed: August 24, 1981
    Date of Patent: December 13, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Derk T. A. Huibers, Hugh J. Parkhurst, Jr.
  • Patent number: 4410420
    Abstract: A multi-zone fluidized bed hydrocarbon conversion process and apparatus for producing gas and distillable liquid products from heavy hydrocarbon feedstocks. The feedstock is introduced into an upper fluidized bed primary cracking zone maintained at temperature of 850.degree.-1400.degree. F. for cracking reactions therein, and resulting tars and coke are deposited on and within a particulate carrier material contained therein. The carrier material containing said tars and coke descends successively through a stripping zone to remove tars and an interim controlled temperature zone for secondary cracking against an upflowing hot reducing gas, then descends into a lower fluidized bed gasification zone. The gasification zone is maintained at temperature of 1600.degree.-1900.degree. F. by oxygen-containing gas and steam introduced therein to gasify the coke deposits and produce the reducing gas.
    Type: Grant
    Filed: January 15, 1982
    Date of Patent: October 18, 1983
    Assignee: HRI, Inc.
    Inventors: Barry Liss, Michael Calderon, Marvin S. Rakow
  • Patent number: 4407367
    Abstract: The recovery of heavy crude oils and tars from subterranean oil bearing formations is enhanced by the injection of pressurized and heated hydrocarbon vapor into a single well drilled into the formation. Condensation of the hydrocarbon vapor heats the heavy oil and tars entrapped in the formation and dilutes the oil so as to decrease its viscosity and enhance its flow into a lower portion of the well. The oil and solvent collected are removed to the surface by pumping. The preferred hydrocarbon vapor is a low boiling fraction derived by distillation of the oil recovered from the formation, however, some stable externally-produced aromatic hydrocarbon vapors of high solvent power such as benzene or toluene or mixtures thereof may also be used and reclaimed from the oil by distillation.
    Type: Grant
    Filed: October 14, 1980
    Date of Patent: October 4, 1983
    Assignee: HRI, Inc.
    Inventor: Paul H. Kydd
  • Patent number: 4404084
    Abstract: An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.
    Type: Grant
    Filed: March 11, 1982
    Date of Patent: September 13, 1983
    Assignee: Hri, Inc.
    Inventors: Derk T. A. Huibers, Edwin S. Johanson
  • Patent number: 4400263
    Abstract: A process for converting coal and other hydrocarbonaceous materials into useful and more valuable liquid products.
    Type: Grant
    Filed: February 9, 1981
    Date of Patent: August 23, 1983
    Assignee: HRI, Inc.
    Inventors: Paul H. Kydd, Michael C. Chervenak, George R. DeVaux
  • Patent number: 4400468
    Abstract: A process is provided for producing adipic acid from a renewable resource, i.e., biomass. The process comprises: hydrolyzing the renewable resource to provide 5-hydroxymethylfurfural, hydrogenating the 5-hydroxymethylfurfural in the presence of a catalyst to provide 2, 5-tetrahydrofurandiomethanol, treating the 2, 5-tetrahydrofurandiomethanol with hydrogen in the presence of a catalyst to provide 1, 6 hexanediol, and oxidizing the 1, 6 hexanediol in the presence of a microorganism to provide adipic acid. The formation of the adipic acid is provided with the microorganism of Gluconobacter oxydans subsp. oxydans. The renewable resources are wastes selected from the group consisting of paper, wood, corn stalks, and logging residues.
    Type: Grant
    Filed: October 5, 1981
    Date of Patent: August 23, 1983
    Assignee: Hydrocarbon Research Inc.
    Inventor: Marcel Faber
  • Patent number: 4400181
    Abstract: Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature.
    Type: Grant
    Filed: January 28, 1982
    Date of Patent: August 23, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: George J. Snell, Paul H. Kydd
  • Patent number: 4398852
    Abstract: A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.
    Type: Grant
    Filed: February 17, 1981
    Date of Patent: August 16, 1983
    Assignee: HRI, Inc.
    Inventor: John D. Milligan
  • Patent number: 4381986
    Abstract: A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.
    Type: Grant
    Filed: July 27, 1981
    Date of Patent: May 3, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Salvatore J. Antieri, Alfred G. Comolli
  • Patent number: 4380678
    Abstract: Aldoses such as glucose solution are catalytically hydrogenated in a multiple-stage fixed-bed reaction process to produce glycerol and other polyol products. The feedstream pH to each reactor is controlled to between about 7 and 14 by adding an alkaline promotor material such as calcium hydroxide. First-stage reaction zone conditions are 130.degree.-180.degree. C. temperature, 500-2000 psig hydrogen partial pressure, and feedstream liquid space velocity is within range of 0.5-3.5 V.sub.f /Hr/V.sub.c. The first reactor uses a high activity nickel catalyst to produce at least about 98 W % conversion to alditol such as sorbitol solution.The resulting alditols such as 15-40 W % sorbitol solution in water is catalytically hydrocracked in a second-stage fixed-bed reaction zone preferably using a high-activity nickel catalyst to produce at least about 30 W % conversion to glycerol and glycols products. Second-stage reaction zone conditions are 420.degree.-520.degree. F.
    Type: Grant
    Filed: March 20, 1981
    Date of Patent: April 19, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Amalesh K. Sirkar