Patents Represented by Attorney Gary C. Roth
  • Patent number: 4928595
    Abstract: A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: May 29, 1990
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard C. Weingart
  • Patent number: 4915463
    Abstract: This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.
    Type: Grant
    Filed: October 18, 1988
    Date of Patent: April 10, 1990
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Troy W. Barbee, Jr.
  • Patent number: 4913807
    Abstract: Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: April 3, 1990
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Charles D. Hendricks
  • Patent number: 4888522
    Abstract: A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: December 19, 1989
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Richard C. Weingart
  • Patent number: 4852493
    Abstract: Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.
    Type: Grant
    Filed: February 12, 1988
    Date of Patent: August 1, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ralph E. Boberg, Ronald S. Lee, Richard C. Weingart
  • Patent number: 4848922
    Abstract: A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.
    Type: Grant
    Filed: April 22, 1988
    Date of Patent: July 18, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Tze-Show Chow
  • Patent number: 4827479
    Abstract: An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.
    Type: Grant
    Filed: November 29, 1984
    Date of Patent: May 2, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Edward M. Campbell, Mordecai D. Rosen
  • Patent number: 4806290
    Abstract: Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
    Type: Grant
    Filed: March 29, 1987
    Date of Patent: February 21, 1989
    Assignee: The United States of America as represented by the The United States Department of Energy
    Inventors: Robert W. Hopper, Richard W. Pekala
  • Patent number: 4799233
    Abstract: A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.
    Type: Grant
    Filed: October 23, 1986
    Date of Patent: January 17, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Kenneth S. Jancaitis, Howard T. Powell
  • Patent number: 4785254
    Abstract: A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.
    Type: Grant
    Filed: June 18, 1987
    Date of Patent: November 15, 1988
    Assignee: The United States of America as represented by The United States Department of Energy
    Inventors: Gilbert E. Cruz, William F. Edwards
  • Patent number: 4756898
    Abstract: Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
    Type: Grant
    Filed: April 30, 1987
    Date of Patent: July 12, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert W. Hopper, Richard W. Pekala
  • Patent number: 4751429
    Abstract: A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).
    Type: Grant
    Filed: May 15, 1986
    Date of Patent: June 14, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Roger W. Minich
  • Patent number: 4730106
    Abstract: An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90).
    Type: Grant
    Filed: December 4, 1986
    Date of Patent: March 8, 1988
    Assignee: United States Department of Energy
    Inventors: David G. Nilson, E. Michael Campbell, Brian J. MacGowan, Hector Medecki
  • Patent number: 4705349
    Abstract: An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.
    Type: Grant
    Filed: January 18, 1985
    Date of Patent: November 10, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Robert P. Reedy
  • Patent number: 4667107
    Abstract: The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.
    Type: Grant
    Filed: June 19, 1985
    Date of Patent: May 19, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Ching L. Wang
  • Patent number: 4637052
    Abstract: A method and apparatus for determining centroid channel locations is disclosed for use in a system activated by one or more multichannel plates (16,18) and including a linear diode array (24) providing channels of information 1, 2, . . . , n, . . . , N containing signal amplitudes A.sub.n. A source of analog A.sub.n signals (40), and a source of digital clock signals n (48), are provided. Non-zero A.sub.n values are detected in a discriminator (42). A digital signal representing p, the value of n immediately preceding that whereat A.sub.n takes its first non-zero value, is generated in a scaler (50). The analog A.sub.n signals are converted to digital in an analog to digital converter (44). The digital A.sub.n signals are added to produce a digital .SIGMA.A.sub.n signal in a full adder (46). Digital 1, 2, . . . , m signals representing the number of non-zero A.sub.n are produced by a discriminator pulse counter (52). Digital signals representing 1 A.sub.p+ 1, 2 A.sub.p+2, . . . , m A.sub.
    Type: Grant
    Filed: October 24, 1983
    Date of Patent: January 13, 1987
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Robert S. Thoe
  • Patent number: 4626791
    Abstract: A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.
    Type: Grant
    Filed: February 8, 1985
    Date of Patent: December 2, 1986
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Heiner W. Meldner, Ronald Y. Cusson, Ray M. Johnson
  • Patent number: 4589113
    Abstract: A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.
    Type: Grant
    Filed: June 25, 1984
    Date of Patent: May 13, 1986
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Peter L. Hagelstein
  • Patent number: 4537091
    Abstract: A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.
    Type: Grant
    Filed: April 1, 1983
    Date of Patent: August 27, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Satish V. Kulkarni, Richard M. Christensen, Richard H. Toland
  • Patent number: H508
    Abstract: Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur.
    Type: Grant
    Filed: October 14, 1987
    Date of Patent: August 2, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: James W. Mark