Patents Represented by Attorney Geeta Kadambi Riddhi IP LLC
  • Patent number: 8252256
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Grant
    Filed: January 1, 2012
    Date of Patent: August 28, 2012
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
  • Patent number: 8216966
    Abstract: An adsorbent composition and method of cleaning the industrial waste water using the composite is described. The method for removing heavy metals from contaminated water is done by mixing contaminated water having a concentration of one or more heavy metals with an adsorbent composite comprising granules of a mixture of 50.363 wt % kaolin clay, a 4.477 wt % roasted date pits powder, a 5.54 wt % silica powder a 14.99 wt % magnesite powder and a 24.623 wt % water. After reacting the contaminated water and adsorbent composite together for a specific time the water is filtered and was found to contain reduced amount of heavy metals. The cleaned water can further be used for industrial cooling systems or watering gardens.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: July 10, 2012
    Assignee: King Abdulaziz City for Science and Technology “KACST”
    Inventor: Saad A Al-Jlil
  • Patent number: 8067009
    Abstract: The invention discloses identification and therapeutic use of matrix metalloproteinase oligopeptides and peptidomimetics. The oligopeptides are used for making antibodies. The antibodies are used for diagnostic and treatment purposes of various diseases. In particular, the diseases may involve the mechanism of degradation of extracellular matrix by MMP's during cell proliferation cycle. Suppression of MMP activity seems to arrest tumor growth during cancer progression. MMP oligopeptides were used as vaccines to treat mice having murine melanoma B16FO induced tumor. There was a significant drop in tumor weight and size for the group of mice that were immunized with MMP oligopeptide.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: November 29, 2011
    Inventors: Matthias W Rath, Aleksandra Niedzwiecki, Waheed M Roomi
  • Patent number: 8012935
    Abstract: The present invention relates to synthetic oligopeptides that exhibit inhibitory activity towards cancer invasion and metastasis. The peptides of the invention comprise PRKPKWDK (SEQ ID:2) peptide corresponding to amino acids of 85 to 92 of the matrix metalloproteinase (MMP-2), and fragments, analogs and homologs. The invention also relates to the uses of such peptides as inhibitory of human cancer invasion and metastasis and further to their therapeutic use in preventing and treating other pathological conditions related to the degradation of extracellular matrix by MMPs.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: September 6, 2011
    Inventors: Shrirang Netke, Aleksandra Niedzwiecki, Matthias Rath
  • Patent number: 7951976
    Abstract: Several metal-supported catalyst compositions based on nano-crystalline zinc oxide were synthesized and characterized by X-ray powder diffraction (XRD), Carbon dioxide temperature programmed desorption (CO2 TPD), and nitrogen adsorption at ?196° C. The Pd-supported nano-ZnO mixed with different oxides such as Cr2O3, CrO3, MgO, and ?-Al2O3 showed high catalytic activity in acetone condensation in gas-phase process under hydrogen flow. This reaction involves the base-acid coupling of acetone to form mesityl oxide, followed by its hydrogenation to methyl isobutyl ketone (MIBK). The novel catalyst 1% wt. n-Pd/n-ZnCr2O4 was utilized during gas-phase reaction during production of MIBK. MIBK selectivity was 70-72% at 66-77% acetone conversion at 300-350° C. Diisobutyl ketone (DIBK) was the main by-product, with a total MIBK+DIBK selectivity up to 88%. The prepared catalysts showed stable activity and may be used repeatedly and for a longer period of time.
    Type: Grant
    Filed: August 15, 2010
    Date of Patent: May 31, 2011
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz Ahmed Bagabas, Vagif Melik Akhmedov, Abdulrahman Al-Rabiah, Mohamed Mokhtar Mohamed Mostafa