Abstract: A method for forming plural waveguide structures in an optical substrate, such as lithium niobate, employs multiple stages of annealed proton exchange. In each stage, the substrate is masked to define a region corresponding to at least one waveguide structure. The mask-defined region is exposed to a proton exchange agent for a predetermined time and at a predetermined temperature, and the substrate is then annealed at predetermined time/temperature conditions. By selecting appropriate process parameters for each APE stage, each of the resultant waveguide structures may be optimized for desired physical and optical characteristics. The method may be utilized, for example, to fabricate sub-Rayleigh range couplers having high coupling efficiencies.