Patents Represented by Attorney, Agent or Law Firm Gerard J. Hughes
  • Patent number: 6641714
    Abstract: Low sulfur gasoline of relatively high octane number is produced from a catalytically or thermally cracked, olefin-rich, sulfur-containing hydrocarbon stream by hydrodesulfurization followed by treatment over an acidic catalyst containing a molecular sieve belonging to the MCM-22 family in combination with a metal component, preferably selected from the transition elements of the 4th and 5th periods of the Periodic Table. The treatment over the acidic catalyst in the second step restores the octane loss which takes place as a result of the hydrogenative treatment and results in a low sulfur gasoline product with an octane number comparable to that of the hydrocarbon feed.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: November 4, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Dennis E. Walsh
  • Patent number: 6632350
    Abstract: A hydrocarbonaceous feed is hydroprocessed in a single vessel containing two reaction stages and a stripping stage. The feed is fed into the first reaction stage to produce a vapor and liquid effluent which are separated, and the liquid stripped. The stripped liquid is passed as feed into the second stage, in which it meets with fresh hydrogen to produce a hydroprocessed liquid product and a hydrogen-rich vapor. The vapor is passed into the first stage, to provide the hydrogen for that stage. The use of a single vessel provides an efficient and economical addition to, or replacement for, a vessel for an existing hydroprocessing facility.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 14, 2003
    Assignee: ExxonMobile Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 6623622
    Abstract: A diesel fraction is purified by a process having two reaction stages and a stripping stage in a single vessel. Heteroatoms are removed in the first stage, to permit the use of a sulfur sensitive aromatics saturation catalyst in the second stage, to produce a purified diesel stock. The first stage liquid effluent is stripped in a stripping stage and then passed into the second reaction stage, in which it reacts with fresh hydrogen for aromatics removal. The second reaction stage produces a hydrogen-rich vapor effluent, which may provide all or a portion of the first stage reaction hydrogen. A noble metal catalyst is employed in the second stage. The diesel feed for the process may be one that has been at least partially refined with respect to either or both heteroatom or aromatics removal.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: September 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 6623625
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The naphthene ring opening catalyst is a catalyst which comprises at least one of a Group VIII metal selected from Ir, Pt, Pd, Rh, and Ru in an amount effective to ring open naphthene rings on naphthene ring-containing compounds, the metal being supported on a substrate comprising at least one Group IB, IIB, and IVA metal in an amount effective to moderate cracking of a naphthene ring-containing feed to form methane.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William C. Baird, Jr., Jingguang G. Chen, Gary B. McVicker
  • Patent number: 6623621
    Abstract: A process for upgrading a liquid petroleum or chemical stream wherein said stream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. The temperature of at least a portion of the liquid stream in the reactor is used to control the flooding characteristics of the reactor.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: September 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Larry L. Iaccino, Russell D. Sellen, David C. Dankworth, Edward S. Ellis, Jeffrey W. Frederick, Ramesh Gupta, James J. Schorfheide, Louis A. Curcio, Jr.
  • Patent number: 6610197
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 26, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Patent number: 6602403
    Abstract: This invention is related to a catalytically cracked or thermally cracked naphtha stream. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to about 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. The resulting product is a high octane naphtha.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: August 5, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Todd R. Steffens, Paul K. Ladwig
  • Patent number: 6596157
    Abstract: The invention relates to a method and dual reactor system for hydrotreating a wide cut cat naphtha stream comprising heavy cat naphtha (HCN) and intermediate cat naphtha (ICN). Accordingly, a HCN fraction is hydrotreated under non-selective hydrotreating conditions and an ICN fraction is hydrotreated under selective hydrotreating conditions. The hydrotreated HCN and ICN effluents may be conducted to heat exchangers to pre-heat the ICN feed, obviating the need for a furnace.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: July 22, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Brij Gupta, John P. Greeley, Thomas R. Halbert
  • Patent number: 6589418
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Patent number: 6589416
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, and catalysts which can be used in that process. The naphthene ring opening catalyst is a polymetallic catalyst comprising Group VIII metals. In a preferred embodiment the naphthene ring opening catalyst comprises Ir in combination with a Group VIII metal selected from at least one of Pt, Rh, and Ru, in an amount effective for opening a naphthene ring-containing compound at a tertiary carbon site.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: July 8, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William C. Baird, Jr., Darryl P. Klein, Michele S. Touvelle, Jingguang G. Chen
  • Patent number: 6586650
    Abstract: A process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The naphthene ring opening catalyst is a catalyst comprising at least one Group VIII metal selected from Ir, Pt, Rh, and Ru, wherein these metals are supported on an alkali metal or alkaline-earth metal modified support in an amount effective for opening a naphthene ring-containing compound at a tertiary carbon site.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: July 1, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William C. Baird, Jr., Darryl P. Klein, Michele S. Touvelle, Jingguang G. Chen, Gary B. McVicker
  • Patent number: 6579444
    Abstract: A process for removing sulfur compounds from hydrocarbon feedstreams, particularly those boiling in the naphtha range, by contacting the feedstream with an adsorbent comprised of cobalt and one or more Group VI metals selected from molybdenum and tungsten on a refractory support. This invention also relates to a process wherein a naphtha feedstream is first subjected to selective hydrodesulfurization to remove sulfur but not appreciably saturate olefins. A product stream is produced containing mercaptans that are removed by use of the cobalt-containing adsorbents of the present invention.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: June 17, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, David N. Zinkie, Myles W. Baker, Bal K. Kaul, Gordon F. Stuntz, Joseph T. O'Bara
  • Patent number: 6579443
    Abstract: A process for upgrading a liquid petroleum or chemical stream wherein said feedstream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. The feedstream is treated so that it is substantially free of particulate matter and foulant precursors.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: June 17, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Larry L. Iaccino, Edward S. Ellis, Ramesh Gupta, Brenda A. Raich
  • Patent number: 6576584
    Abstract: A method for producing a hydrotreating catalyst which relates to the production of a solid catalyst composed of a carrier impregnated with an active component, to give a catalyst for hydrotreating hydrocarbon oils, which contains a large quantity of a hydrogenation-active component and uniform, crystalline composite metal compound, and shows high catalytic activity.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 10, 2003
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Patent number: 6569315
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefinic naphthas. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking in an out-board FCC reactor it in order to form a naphthenic blend-stock.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 27, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter
  • Patent number: 6569314
    Abstract: The present invention relates to a process for upgrading a liquid petroleum or chemical stream wherein said stream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. At least a fraction of up flowing vapor product is condensed to produce a condensate comprised of the heavier fraction of the vapor phase product stream and a lighter remaining vapor stream. The condensate and potentially the lighter remaining vapor stream are further hydroprocessed.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: May 27, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Larry L. Iaccino, Edward S. Ellis
  • Patent number: 6541586
    Abstract: The invention relates to a method of forming carbon monoxide-containing polymers from multi-component syngas feeds and at least one vinyl comonomer. Feeds useful in the practice of the invention comprise ethylene in an amount ranging from about 5 to about 40 mole %, carbon monoxide is an amount ranging from about 1 to about 40 mole %, hydrogen in an amount ranging from about 4 to about 55 mole %, carbon dioxide in an amount ranging from about 3 to about 10 mole %, and methane in an amount ranging from about 4 to about 85 mole %. The feed may also include acetylene in an amount ranging up to about 10 mole %. The feed may contain at least one free radical-polymerizable vinyl comonomer, or a cofeed containing such a comonomer can be used.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: April 1, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Abhimanyu O. Patil, Donald N. Schulz, Raymond A. Cook, Michael G. Matturro
  • Patent number: 6517704
    Abstract: A process for upgrading oil feedstock wherein the feedstock is hydrocracked, and flasked and/or distilled. A distillate fraction boiling in the diesel range is isolated and dewaxed under high pressure by a medium pore molecular sieve. The dewaxed material is then cascaded to a hydrofinishing step, where it is contacted with an aromatics saturation catalyst having a metal hydrogenation function in order to produce diesel fuels having low aromatics content.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: February 11, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael B. Carroll, Fritz A. Smith, John C. Bixel
  • Patent number: 6500329
    Abstract: A two stage process useful for cetane upgrading of diesel fuels. More particularly, the invention relates to a process for selective naphthenic ring-opening utilizing an extremely low acidic distillate selective catalyst having highly dispersed Pt. The process is a two stage process wherein the first stage is a hydrotreating stage for removing sulfur from the feed and the second stage is the selective ring-opening stage.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6495029
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds present in petroleum and chemical streams. The stream is passed through at least one reaction zone countercurrent to the flow of a hydrogen-containing treat gas, and through at least one sorbent zone. The reaction zone contains a bed of Group VIII metal-containing hydrodesulfurization catalyst and the sorbent zone contains a bed of hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: December 17, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: James J. Schorfheide, Edward S. Ellis, Michele S. Touvelle, Ramesh Gupta