Patents Represented by Attorney Glenn T. Barrett
  • Patent number: 8349267
    Abstract: Targeted application of anti-fouling mechanisms in a heat exchange system produces higher rates of energy recovery. The anti-fouling mechanisms with high mitigation rates can be deployed at only the hottest portions of a pre-heat train that experience the highest rates of fouling and heat loss. In application, bundles of corrosion resistant smoothed tubes are deployed in the late pre-heat train to significantly reduce the formation of harder deposits. Vibration can be used as an adjunct approach in conjunction with the corrosion resistant, smooth tubes, or deployed alone on existing bundles. The use of high performing, more durable exchangers in select locations justifies the increased cost of these components.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 8, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ian A Cody, Amar S. Wanni, Robert C. Welch, James E. Feather, Mark A. Greaney, Limin Song, Jasmina Poturovic
  • Patent number: 8343315
    Abstract: Saline waters are made suitable for use in large quantities in petroleum refining operations by evaporative desalination of a water source having a dissolved salt content of at least 30,000 ppmw with the heat liberated during the steam condensation used as low quality heat for petroleum refining operations. Sea water is most suitable for evaporative purification processes.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 1, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Ramesh Varadaraj
  • Patent number: 8329941
    Abstract: A method for recovering high molecular weight naphthenic tetra-acids, particularly ARN acids from a calcium naphthenate deposit. Calcium naphthenate deposits contain large amounts of calcium naphthenate salts of ARN acids. The method dual solvent extraction process in which the naphthenic tetra-acids chemically bound as calcium naphthenate salts are converted into free acid monomers by an aqueous acid. The resulting free acid monomers are then dissolved into an organic solvent phase and the counterions dissolve in the aqueous acid phase. The naphthenic tetra-acids are then recovered from the organic solvent phase.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: December 11, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Steven W. Levine, Manuel A. Francisco, Sharon A. Feiller, Clifford C. Walters
  • Patent number: 8317902
    Abstract: A process for removing polar components from a process stream in a refinery process without cooling the process stream. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur at substantially the same elevated temperature by exposing the process stream to a metal oxide and/or a mixed metal oxide to remove the sulfur containing contaminants and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be regenerated by exposing it to a stream of oxygen and the desulfurized process stream exposed to the regenerated metal/mixed metal oxide to remove moisture from the stream. The stream is then processed within a second adsorber unit to remove nitrogen containing contaminants at substantially the same elevated temperature by exposing the stream to a molecular sieve and/or zeolite.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 27, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Bhupender S Minhas, Frederick Y. Lo, Ian A Cody, Donald E Stratton
  • Patent number: 8286695
    Abstract: An insert for reducing sulfidation corrosion and depositional fouling is disclosed. The insert is formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 16, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Mark A. Greaney, James E. Feather, Thomas Bruno, ChangMin Chun, Clifford Hay
  • Patent number: 8240367
    Abstract: An insert is provided in a flow path adjacent to the input and/or output port of a plate heat exchanger to shield heat transfer elements adjacent to the port from high velocity flow. By deflecting and redirecting the high velocity flow from the port, vibration induced stress to the heat transfer elements can be minimized. The insert is provided with a converging nozzle that directs the flow into a narrowed body. The outlet of the insert can be formed as an open end of the body or as a contoured opening in the side wall of the body. Flow can also be more uniformly distributed to the flow channels defined between the heat transfer elements.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 14, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Amar S. Wanni, Thomas M. Rudy, Douglas F. Slingerland, Chih Pong Sin
  • Patent number: 8211548
    Abstract: A heat transfer component that is resistant to both corrosion and fouling is disclosed having a heat exchange surface formed from a silicon containing steel composition including an alloy and a non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The non-metallic film comprises sulfide, oxide, carbide, nitride, oxysulfide, oxycarbide, oxynitride and mixtures thereof. The surface roughness of the heat transfer component is less than 40 micro inches.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan, LeRoy R. Clavenna
  • Patent number: 8201619
    Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 19, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Mark A. Greaney, Thomas Bruno, Ashley E. Cooper, Ian A. Cody, ChangMin Chun
  • Patent number: 8114272
    Abstract: A method of processing the waste stream includes introducing the waste stream into the Fluid Catalytic Cracking Unit such that waste stream is processed within the regenerator unit or in CO boiler unit such that the waste stream and the regenerator flue gas are burned within the regenerator unit or the CO boiler unit. The waste stream contains NH3 and the NH3 is converted to the NOx and N2. The fluid catalytic cracking unit may further include an assembly for converting NOx to N2. Flue gas from the CO boiler unit containing NOx and N2 is fed to the assembly to NOx to N2 within the assembly. The assembly for converting NOx to N2 preferably includes a selective catalytic reduction unit containing a catalyst, and wherein converting NOx to N2 includes reacting the NOx with the catalyst to produce N2 and H2O.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 14, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventor: Patrick J. Maher
  • Patent number: 8095335
    Abstract: A process of mapping piping systems associated with a refinery and petrochemical facilities is disclosed, which maps piping systems, which interconnect facility operating units with other operating units, utilities, distribution facilities and storage units. A system for aiding in the isolation of piping systems, operating units and other facility components is also disclosed. The system includes a search database having representations of the piping systems and its related components. A method of isolating an event within a facility is also disclosed. The method includes identifying the location of an event in the facility, performing a search to identify the impacted piping systems and related components, and identifying measures to isolate the event.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 10, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Susan C Hill, Elvis L Calhoun, William M Castro
  • Patent number: 8088281
    Abstract: A method for the removal of entrained hydrocarbons, particularly aromatics, from water by extracting the hydrocarbons in the water with a hydrocarbon which is relatively less soluble in the water than the entrained hydrocarbon. The hydrocarbons are then separated from the water by a process of coalescence/separation. The extractant is suitably a paraffinic hydrocarbon which, while having an affinity for the entrained hydrocarbon, is relatively less soluble in water than hydrocarbons such as aromatics. The hydrocarbons removed from the water can be recirculated to the feed with the composition of the recirculating phase being controlled to achieve the desired level of hydrocarbon removal.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 3, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Patent number: 8083901
    Abstract: A de-entrainment device separates entrained liquid from vapor in a fluid stream that flows through a chimney tray in a distillation tower. The separated liquid is collected and shielded from the fluid stream to prevent re-entrainment of the liquid in the vapor flowing upward into the tower. The chimney tray includes risers with hats that have gutters to guide liquid toward the tray deck, channels to collect and drain liquid from the top of the hats to the tray deck, and baffles extending from the risers to shield the liquid collected on the tray deck from the vapor flow.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Arun K. Sharma, Theodore Sideropoulos, Berne K. Stober, Brian D. Albert, Alvin U. Chen, Vikram Singh
  • Patent number: 8080087
    Abstract: A method of drying liquid and gaseous hydrocarbons by contacting a feed stream of the hydrocarbon with an aqueous solution of a salt drying agent prior to passing the stream through a salt dryer to remove part of the water in the stream. The aqueous solution of the salt drying agent is generated in the salt dryer when the partly dried stream comes into contact with the drying salt and forms the solution. The solution is circulated in a loop from the salt dryer to the incoming feed and then through a liquid/liquid coalescer which removes a portion of the water together with dissolved salt from the mixture before the mixture is passed on to the salt dryer where further removal of water occurs. The salt dryer is off-loaded by a substantial factor by the initial partial dehydration and does not require to remove such a large amount of water; the salt consumption is therefore reduced in proportion to the amount of water removed in the treatment steps which precede the dryer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 20, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Patent number: 8062504
    Abstract: A method of reducing asphaltene and particulate induced fouling during the thermal processing of petroleum oils utilizes resin extracts from HSDP crude oils to disperse and solubilize asphaltenes and disperse inorganic particulate contaminants such as salts and iron oxide. The extracts are essentially maltene fractions which may be separated from the HSDP crude by a process of extraction from a precipitated asphalt fraction using light paraffinic solvents such as n-heptane.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: November 22, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Chris A Wright, Glen B. Brons
  • Patent number: 8037928
    Abstract: A heat transfer component that is resistant to corrosion and fouling is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof. The metal M of the chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) may comprise Fe, Cr, and constituting elements of the steel ?.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan
  • Patent number: 8034246
    Abstract: A method for removing ionic, organic and elemental mercury from aqueous streams such as wastewater streams from hydrocarbon processing. The method comprises four primary removal steps. First, a mercury precipitant is added to the stream to convert dissolved ionic species of mercury water-insoluble form. The majority of these precipitated solids, as well as other forms of particulate mercury, are subsequently removed by means of gas flotation. Following the flotation step, additional particulate and precipitated ionic mercury removal is accomplished with media filtration and finally, activated carbon acts to remove the remaining dissolved ionic mercury species as well as elemental and organic forms of mercury.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: October 11, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Meredith B. Gustafsson, Bal K. Kaul, Brian S. Fox, David A. Masciola, Bowornsak Wanichkul
  • Patent number: 8002983
    Abstract: A strainer device for a fluid flow circuit removes debris and solid particles from the fluid flow to prevent plugging and reduce fouling of the system. The assembly includes a chamber that can be hydrocyclonic, a collection area, a screen assembly and a distributor that allows selective connection to a flushing fluid. The fluid flows through the chamber past the strainer device, with large particles collecting in the collection area under the influence of gravity and smaller solid particles being collected in the screen assembly. Particles can be flushed from the system by selectively activating the distributor to back flush the screen assembly and sweep the collection area free of solid particles without disassembling the system.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: August 23, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Amar S. Wanni, Thomas M. Rudy, Claude A. Lafleur, Clifford A. Hay, Tomas R. Melli
  • Patent number: 7981253
    Abstract: An improved de-entrainment device for use in distillation towers, especially vacuum distillation towers used for fractionating petroleum atmospheric resids is in the form of a baffle which is to be located in the portion of the tower below the feed zone and at the top of the flash zone. The baffle is in the form of an apertured plate above the stripping zone and in its preferred form comprises number of radial fins or blades, resembling a static fan with openings between the fins to permit vapors from the lower portions of the tower to pass upwards through the baffle with a minimal pressure drop. The fins of the baffle are preferably oriented at an angle between 30° and 60° away from the incoming feed so that the incoming feed stream skims over the top edges of the fins.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Arun K. Sharma, Theodore Sideropoulos, Rutton D. Patel, Brian D. Albert, Alvin U. Chen
  • Patent number: 7976640
    Abstract: A method for the on-line cleaning of a heat exchanger used with petroleum process fluids which create coke deposits of asphaltenic origin on the exchanger tubes. The asphaltenes are removed by re-dissolution in a solvent oil of high solubility power for the asphaltenes. Certain asphaltenic crudes are useful as solvents in view of their chemical similarity to the asphaltene coke precursors; also useful are refined petroleum fractions such as gas oils which are also characterized by their solvency for asphaltenes. The solvent oil may be admitted to the heat exchanger following withdrawal of the process fluid and then allowed to soak and dissolve the asphaltene coke precursors after which the resulting solution may be withdrawn and the exchanger returned to use without being at any time disconnected from its associated process unit.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 12, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Douglas S. Meyer, Glen B. Brons, Ryan E. Vick, Douglas P. Bryant, Gary L. Novosad
  • Patent number: 7951340
    Abstract: Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 31, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright, George A. Lutz, Mark A. Greaney