Abstract: A very high efficiency NOX aftertreatment system is provided for use in lean burn engines. A lean NOX adsorber is synergistically combined with a selective catalytic reduction catalyst to use the ammonia formed within the NOX adsorber, during regeneration of the NOX adsorber while periodically operating the engine in a fuel-rich combustion mode, to reduce NOX remaining in the exhaust gas stream after passage through the NOX adsorber during normal operation of the engine in a lean burn combustion mode.
Type:
Grant
Filed:
December 30, 2002
Date of Patent:
May 11, 2004
Assignee:
Southwest Research Institute
Inventors:
Rudolf H. Stanglmaier, Ryan C. Roecker, Charles E. Roberts, Jr., Daniel W. Stewart
Abstract: An apparatus for delivering aerosolized fibrin endoscopically to a wound is disclosed. The apparatus has a pair of syringes for holding fibrin precursors, a mixing chamber for mixing the fibrin precursors separately with pressurized gas to form individual aerosol solutions, and a delivery tube for delivery of the aerosol solutions to a remote surgical site for formation of an aerosolized fibrin seal.
Abstract: A method and apparatus for operating a diesel engine under stoichiometric or slightly fuel-rich conditions, as is often necessary to maintain effective operation of certain post-combustion emission reduction devices, such as Lean NOx Traps, includes a readily vaporizable fuel injection nozzle disposed in the intake manifold system in communication with a combustion chamber of the diesel engine. The readily vaporizable fuel mixes with the intake air and produces a mixture of pre-mixed air and fuel when introduced into the combustion chamber. A diesel fuel, which is directly injected into the combustion chamber through a conventional diesel fuel injection nozzle. Combustion of the pre-mixed air and readily vaporizable fuel, with controlled injected of the diesel fuel, reduces the particulate matter (soot) emissions when operating the engine under the necessary stoichiometric or slightly fuel-rich conditions.
Abstract: Timing of the combustion event in an homogenous-charge compression-ignition engine is controlled by adjusting the reactivity of the fuel, or of the fuel/air mixture inducted into the combustion chamber of the engine, thereby providing a means of controlling the combustion phasing. When the mixture is made more reactive, combustion occurs earlier in the cycle, and when the mixture reactivity is decreased, the reaction phasing is retarded. In the present invention, the reactivity of the intake charge is regulated in one embodiment by using a catalytic reaction in the intake system to partially, oxidize the intake mixture. In another embodiment, fuel reactivity is adjusted by passing a portion of the fuel through a catalyst or a non-thermal plasma generator prior to injection into the engine. In still another illustrated embodiment, an additive is controllably added to the fuel prior to injection into the engine to increase or decrease fuel reactivity.
Type:
Grant
Filed:
October 17, 2002
Date of Patent:
December 16, 2003
Assignee:
Southwest Research Institute
Inventors:
Rudolf H. Stanglmaier, Charles E. Roberts, Jr., Daniel W. Stewart