Abstract: A high pressure control valve is arranged in a refrigerant passage formed from an internal heat exchanger to an evaporator 4 in a refrigerating cycle of CO2 refrigerant having the internal heat exchanger 8. The high pressure control valve 3, 3A to 3F controls refrigerant pressure on the internal heat exchanger outlet side according to a temperature of the refrigerant at the outlet of the radiator. Into a temperature sensing section (airtightly closed space A), the inner pressure of which is changed according to the refrigerant temperature on the radiator outlet side, CO2 refrigerant, the charging density of which is 200 to 600 kg/m3, preferably 200 to 450 kg/m3, is charged.
Abstract: Disclosed herein is a multi-step hinge. The hinge includes a housing. A rotary member is rotatably installed inside of the housing. The rotary member has a retainer groove formed in the outer circumferential face thereof. A stopper is slidably installed at either side of the rotary member inside of the housing. The stopper has a retainer protrusion formed so as to be engaged with the retainer groove. A resilient member is disposed between the housing and the stopper. A portable terminal having the multi-step hinge is also disclosed.
Abstract: An electronic device includes: a radio transmitting part which transmits, by radio, transmission data having a real transmission data portion and a preamble portion mixed, the preamble portion constituted by pseudo noise signals arranged in a given pattern; a radio receiving part near the radio transmitting part, which receives transmission data transmitted from the radio transmitting part and has a phase-adjusting control part, the phase-adjusting control part adjusting a phase of a received local oscillator output based on the pseudo noise signals of the preamble portion; and a wire communication part which communicates a timing of transmitting the preamble portion in the transmission data transmitted by the radio transmitting part to the radio receiving part by wire.
Abstract: Systems and methods for performing a stepwise depressurization of a high-pressure fluid (liquid) filled chamber are shown and described. At least two valves are controllably opened and closed in a sequence to release a predetermined amount of pressure from the high-pressure chamber. At least some of the pressurized fluid released from the high-pressure chamber is stored, at least temporarily, in a second pressure chamber. The second pressure chamber is located between the two controllable valves. A control system controls the valves in response to a signal from at least one pressure sensor coupled to the high-pressure chamber. Additional components can be included in the system such as a pressure intensifier and a high-pressure pump, both coupled to the high-pressure chamber, and at least one other pressure sensor to improve the accuracy of the measured pressure in the high-pressure chamber.
Abstract: A method for manufacturing a droplet ejection head includes a step of forming recessed sections for forming nozzles by etching half way through a first face of a silicon substrate, a step of bonding a first support substrate to the first face of the silicon substrate, a step of reducing the thickness of the silicon substrate by processing a second face of the silicon substrate that is opposite to the first face thereof, and making the recessed sections through holes, and a step of removing the first support substrate from the silicon substrate after the reduction of the thickness of the silicon substrate.
Abstract: A signal circuit of the present invention includes (i) a plurality of signal sources; (ii) a plurality of source lines; and driving means for driving the data lines, the source lines being divided into a plurality of groups, each of the groups including three source lines, adjacent groups constituting one block, wherein: the driving means selects groups which belong to a clump of blocks including a first block, and a second block adjacent to the first block so that, (i) during a first predetermined period, the driving means simultaneously selects groups that belong to the first block, and simultaneously selects groups that belong to the second block, and (ii) during a second predetermined period subsequent to the first predetermined period, the driving means selects groups one by one from groups disposed at respective ends of the clump of blocks, simultaneously selects adjacent groups that belong to different blocks, and selects remaining groups one by one.
Abstract: A semiconductor test apparatus for determining memory failure, including a first at least one multiplexer. The first at least one multiplexer may include a first transistor and a second transistor, the first transistor and the second transistor being different sizes. The semiconductor may include a scan cell, the scan cell including a second at least one multiplexer. The second at least one multiplexer may include a third transistor and a fourth transistor, the third transistor and the fourth transistor being different sizes. Another semiconductor test apparatus including a plurality of scan cells and a plurality of multiplexers, each of the plurality of scan cells and the plurality of multiplexers formed in a single wrapper.
Abstract: A multi-service platform system (100, 200) including a VMEbus network (102) and a switched fabric network (104) wherein the VMEbus network (102) and the switched fabric network (104) operate concurrently within the multi-service platform system (100, 200). Multi-service platform system (100, 200) can include a payload module (106) with a first switched fabric connector (210) in a P0 mechanical envelope (218) that is designed to interface with a corresponding first switched fabric connector (212) in the J0 mechanical envelope (220) on a backplane (204).
Type:
Grant
Filed:
June 24, 2002
Date of Patent:
May 26, 2009
Assignee:
Emerson Network Power - Embedded Computing, Inc.
Abstract: A single ended pseudo differential signaling method may add a 1-bit signal to n-bit data if transmitting the n-bit data. Neighboring two signals among the 1-bit signal and data signals are compared to each other to generate detection signals.
Abstract: A method of manufacturing a wiring substrate having a wiring layer formation step that includes: a first surface processing step in which surface processing is performed on a film formation area of a substrate; a wiring formation step in which a wiring pattern is formed by placing a first liquid material on the film formation area; a second surface processing step in which surface processing is once again performed on the film formation area; and an insulating film formation step in which an insulating film is formed by placing a second liquid material in gaps in the wiring pattern, wherein an affinity between the second liquid material and the film formation area in the insulating film formation step is greater than an affinity between the first liquid material and the film formation area in the wiring formation step.
Abstract: A method is provided to facilitate the movement of a medical device for automated mapping of anatomical surfaces of a subject's heart with a remote navigation. The method may include one or more distinct movements for moving a medical device for mapping a portion of an anatomical surface of a subject's heart. Upon establishing contact of the tip of the medical device with a surface of the heart, one method provides for moving the medical device along the surface of the heart towards an anatomical feature until a loss of contact with the surface is sensed, and determining the point where the loss of contact occurred to identify at least one point along the anatomical feature. The process may be repeated to identify a multiplicity of points that serve to define the ridge on the interior heart surface. The ridge location in the anatomical map can be used as a reference or guide to facilitate the further mapping of physiological properties and to plan therapy delivery during the medical procedure.
Abstract: A vapor compression refrigerating apparatus comprises a refrigerating cycle for performing a cooling operation of an automotive air conditioning system, a Rankine cycle for collecting waste heat from an engine of a vehicle to generate an electric power by an electric rotating device driven by an expansion device of the Rankine cycle, and a heat pump cycle for generating heat to supply the generated heat to the engine so that a warming up operation of the engine can be facilitated.
Abstract: An airbag ECU includes a communication bus connection circuit for connecting communication buses to communication circuits. A central control circuit connects some of the communication buses to the communication circuits with the communication bus connection circuit and sets addresses for some of slave sensor devices. When those addresses are set, the other communication buses are connected to the communication circuits by the communication bus connection circuit, and addresses for the other slave sensor devices are set. Thus, a circuit can be made simpler without any influence on address setting, thus reducing cost and size of an airbag apparatus.
Abstract: A printing device includes a unit acquiring first image data having pixel data corresponding to a pixel value of an M value corresponding to each color of the color image; a unit storing nozzle information related to banding; a unit creating second image data by changing a pixel data value corresponding to an abnormal nozzle in the first image data; a unit creating printing data by converting the second image data into dot forming pattern data; and a unit that prints a color image constructed by the second image data. The second image data creating unit changes a pixel data value corresponding to the abnormal nozzle into a value for reducing the banding, and thereafter, changes a pixel data value of a different color nozzle so the predetermined color is within the same color range, in an image portion of the predetermined color.
Abstract: An acceleration sensor, including: an oscillator unit for outputting an oscillator signal, the oscillator unit including a first piezoelectric vibrating reed having a vibrating arm that performs bending vibration, as well as an oscillator circuit for oscillating the first piezoelectric vibrating reed; a phase shifting unit for shifting and outputting a given phase angle of an output signal of the oscillator unit; a phase shift circuit unit provided with a second piezoelectric vibrating reed having a vibrating arm that performs bending vibration, arranged at an output side of the phase shifting unit; a multiplier for multiplying the output signal of the phase shift circuit unit by the output signal of the oscillator circuit; and a phase shift modification output unit which receives an output from the multiplier and outputs a value corresponding to a change in a phase shift angle of an input-output signal of the phase shift circuit unit; a resonant frequency of the second piezoelectric vibrating reed being equa
Abstract: A method of forming a memory device, where a first insulator layer and a charge trapping layer may be formed on a substrate, and at least one of the first insulator layer and charge trapping layer may be patterned to form patterned areas. A second insulation layer and a conductive layer may be formed on the patterned areas, and one or more of the conductive layer, second insulator layer, charge trapping layer and first insulator layer may be patterned to form a string selection line, ground selection line, a plurality of word lines between the string selection and ground selection lines on the substrate, a low voltage gate electrode, and a plurality of insulators of varying thickness. The formed memory device may be a NAND-type non-volatile memory device having a SONOS gate structure, for example.
Type:
Grant
Filed:
April 23, 2007
Date of Patent:
May 26, 2009
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Yoo-Cheol Shin, Jeong-Hyuk Choi, Sung-Hoi Hur
Abstract: Provided are a semiconductor laser device capable of stable operation at the time of high power output without damage to a resonator end surface and a method of manufacturing the same, as well as an optical transmission module and an optical disk apparatus using the semiconductor laser device. A method of manufacturing a semiconductor laser device includes a laser wafer formation step of forming a laser wafer at least having a semiconductor layer to form a resonator end surface, a cleavage step of cleaving the laser wafer in the atmosphere and forming a semiconductor laser element having the resonator end surface, a contact step of brining the resonator end surface in contact with a nitrogen containing gas containing 90-100 volume % nitrogen for one hour or longer, and a reflectance control film formation step of forming a reflectance control film in contact with the resonator end surface.