Patents Represented by Attorney Henry H. Rodman & Rodman Gibson
  • Patent number: 6086722
    Abstract: A process for minimizing evaporator scaling during the recovery of liquids and solids from the aqueous effluent discharged during a partial oxidation gasification, wherein the aqueous effluent contains ammonium chloride (NH.sub.4 Cl). The aqueous effluent is evaporated to produce a distillate water and a brine having an NH.sub.4 Cl concentration of about 10 to 60 weight percent. The brine can be further concentrated and ammonium chloride crystals are recovered. The distillate water is recycled to the gasification reaction. No effluent discharges to the environment.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: July 11, 2000
    Assignee: Texaco Inc.
    Inventors: George Henry Webster, Jr., Byron Von Klock, Dinh-Cuong Vuong, John Saunders Stevenson, Steven Robert Johnson
  • Patent number: 6001886
    Abstract: A petroleum derived oil is subjected to crude oil distillation or propane deasphalting to yield a viscous asphalt residue. The viscous asphalt residue is combined with an aqueous emulsifier comprising an EO-PO-EO block copolymer and passed through a mixer at 60.degree. C. to 70.degree. C. to form an emulsion. Criticality has been found in the amount of propylene oxide in the block copolymer and in the asphalt particle size. These emulsions are stable and can be transported by pumping through a pipeline. They are used as boiler fuel. They are also gasified with insufficient oxygen to produce synthesis gas.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: December 14, 1999
    Assignee: Texaco Inc.
    Inventor: Shailaja Madhusudhan Shirodkar
  • Patent number: 5993558
    Abstract: Fluoride-containing scale can be removed from metal surfaces such as titanium, titanium alloys, nickel alloys, and stainless steel by contacting the metal surfaces with an aqueous salt solution of an inorganic acid, including its hydrates. The cationic portion of the salt can be aluminum, iron and mixtures thereof. The anionic portion of the salt can be a chloride, a nitrate, a sulfate, and mixtures thereof. The contracting occurs in the absence of the addition of an acid, such as hydrochloric, nitric, or sulfuric acid. The presence of the aqueous salt solution with the dissolved fluoride scale does not accelerate or increase the normal rate of metal corrosion that can occur in the absence of the aqueous salt solution or any acidic cleaning agent.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: November 30, 1999
    Assignee: Texaco Inc.
    Inventors: George Henry Webster, Jr., Byron Von Klock
  • Patent number: 5941459
    Abstract: The fuel injector nozzle for a gasifier includes a protective refractory sheath that is flush mounted at a downstream end proximate the nozzle outlet portion. The refractory insert is of annular form to surround the nozzle outlet. The annular refractory member can be a one-piece structure or a multi-segment structure of preferably not more than four pieces. Whether the annular refractory member is a one-piece structure or a multi-segment structure, it is recessed in a downstream end surface of the fuel injector nozzle and retained in the recess by locking pins or by thread-like engagement between a projection and a groove that are provided on complementary inter-engaging surfaces of the recess and the refractory member. The retaining structure provided on the annular refractory member and at the recess in which the refractory member is disposed securely maintain the annular refractory protective member in position.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: August 24, 1999
    Assignee: Texaco Inc
    Inventors: Donald Duane Brooker, Michael Edward Fahrion, Gary Thomas Delgrego, Augustine Camacho
  • Patent number: 5904879
    Abstract: An integrated liquefaction and gasification process converts bulk particulate halogen-containing waste plastic materials with minimal particle size reduction into a synthesis gas and a non-leachable, vitreous environmentally nontoxic slag. The process involves melting and cracking bulk particulate halogen-containing waste plastic material to form a lower boiling point, lower molecular weight halogen-containing oil composition which then undergoes partial oxidation in a quench gasifier to produce a synthesis gas. Any hazardous gases, liquids or solids that are produced can be purified into commercially valuable byproducts or recycled to the process, which does not release hazardous materials to the environment.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: May 18, 1999
    Assignee: Texaco Inc
    Inventors: John Duckett Winter, Paul Ellis Brickhouse, Ronald Frederick Tyree, John S. Stevenson, Gregory Joseph Mayotte, Jerrold Samuel Kassman, Byron Von Klock
  • Patent number: 5883299
    Abstract: A diaphragm failure monitoring system for detecting leakage in a diaphragm of a diaphragm pump. The system includes a pump having an operating chamber containing a working fluid and a pumping chamber for pumping material into and out of the pump and a diaphragm separating the operating and pumping chambers. A first optic fiber is joined to the operating chamber for transmitting an optic signal across the working fluid. A second optic fiber is joined to the operating chamber for receiving the optic signal from the first optic fiber. An electric signal establishing device establishes a first electrical signal when the optic signal from the first optic fiber to the second optic fiber passes through uncontaminated working fluid.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: March 16, 1999
    Assignee: Texaco Inc
    Inventors: Steven R. Green, David L. Powell, Jr.
  • Patent number: 5866091
    Abstract: The present invention relates to a method for minimizing hydrogen halide corrosion in quench gasifier during the non-catalytic partial oxidation reaction of a halogen-containing hydrocarbonaceous feed, to produce a hydrogen halide-containing synthesis gas, finely divided particulate solids, and a nontoxic slag. The hydrogen halide-containing synthesis gas is contacted with water in the quench zone of the gasifier. The quench water contains a neutralizing agent, in excess of the amount necessary to neutralize hydrogen halide acids present therein, to thereby form halide salts. The quench water containing the halide salts is purified to recover the halide salts. The salt-free water is essentially environmentally non-toxic and can either be recycled to the process or discarded in conformity with environmental regulations.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: February 2, 1999
    Assignee: Texaco Inc
    Inventors: John Saunders Stevenson, Byron Von Klock, John Duckett Winter, Jerrold Samuel Kassman, George Henry Webster, Jr., Paul Ellis Brickhouse
  • Patent number: 5856680
    Abstract: A petroleum derived oil is subjected to crude oil distillation or propane deasphalting to yield a viscous asphalt residue. The viscous asphalt residue is combined with an aqueous emulsifier comprising an EO-PO-EO block copolymer and passed through a mixer at 60.degree. C. to 70.degree. C. to form an emulsion. Criticality has been found in the amount of propylene oxide in the block copolymer and in the asphalt particle size. These emulsions are stable and can be transported by pumping through a pipeline. They are used as boiler fuel. They are also gasified with insufficient oxygen to produce synthesis gas.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: January 5, 1999
    Assignee: Texaco Inc
    Inventor: Shailaja Madhusudhan Shirodkar
  • Patent number: 5851497
    Abstract: A gasifier (10) for partially combusting a carbonaceous fuel mixture in the combustion chamber (13) of the gasifier (10). The latter includes a water bath (26) into which the hot effluent or the products of combustion are immersed, including a synthetic gas. The products of combustion are directed into the bath (26) by way of a constricted throat section (31). To avoid excessive erosion action and/or thermal shock to the throat section (31) as a result of exposure to the effluent's high temperatures, the throat section (31) is structured with an internal framework of pipes (32). The flamework (32) is communicated with a pressurized source of a cooling fluid (42), preferably water, whereby to cool the throat section (31) sufficiently to counteract the ill effects of exposure to contact with the high temperature effluent.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: December 22, 1998
    Assignee: Texaco Inc.
    Inventors: Donald Duane Brooker, James Samuel Falsetti, James Kenneth Wolfenbarger, Dinh-Cuong Vuong
  • Patent number: 5837037
    Abstract: The present invention relates to a method for removing high molecular weight high melting point hydrocarbon vapors from a hydrocarbon vapor offgas stream produced during the liquefaction of a solid waste plastic material to produce an oil that serves as a liquid feedstock for a partial oxidation reaction. The hydrocarbon vapor offgas stream is directly contacted with a water spray at a condensation temperature above the melting point of the high molecular weight hydrocarbons contained in the offgas. This results in the condensation and convenient removal of the high melting point hydrocarbons, referred to as "waxes." One or more subsequent condensation steps can be conducted at lower condensation temperatures to remove the lower temperature condensable hydrocarbons. The remaining uncondensed vapors are then recycled to serve as a heater fuel for the liquefaction of the waste plastic material.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: November 17, 1998
    Assignee: Texaco Inc
    Inventor: John Duckett Winter
  • Patent number: 5785721
    Abstract: The operating life of a fuel injector nozzle for a gasifier is prolonged by shielding the fuel injector nozzle with a preformed protective insulating sheath before the fuel injector nozzle is installed inside a preheated reaction chamber of the gasifier. The thermal insulating sheath has low thermal conductivity and is placed around the fuel injector nozzle body. The thermal sheath can also be positioned to cover a downstream end of the fuel injector nozzle that includes a nozzle portion. The thermal insulating sheath is supported by ceramic rope, solder or metal wire and is gradually consumable in the environs of the reaction chamber immediately after the fuel injector nozzle is installed. Before the thermal sheath is consumed, it moderates the temperature rise rate of the fuel injector nozzle while the fuel injector nozzle is being installed in the gasifier.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: July 28, 1998
    Assignee: Texaco Inc.
    Inventor: Donald Duane Brooker