Patents Represented by Attorney, Agent or Law Firm Henry P. Sartorio
  • Patent number: 5578183
    Abstract: Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: November 26, 1996
    Assignee: Regents of the University of California
    Inventor: John F. Cooper
  • Patent number: 5578784
    Abstract: A projectile interceptor launches a projectile catcher into the path of a projectile. In one embodiment, signals indicative of the path of a projectile are received by the projectile interceptor. A flinger mechanism has a projectile catcher releasably attached thereto, such that the projectile catcher can be released and launched from the flinger mechanism. A controller connected to the flinger mechanism uses the signals indicative of the path of the projectile to determine the launch parameters of the projectile catcher. The controller directs the flinger mechanism to release the projectile catcher such that the projectile catcher is launched into the path of the projectile and intercepts the projectile.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: November 26, 1996
    Assignee: The Regents of the University of California
    Inventors: Thomas J. Karr, Lee C. Pittenger
  • Patent number: 5575929
    Abstract: A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 19, 1996
    Assignee: The Regents of the University of California
    Inventors: Conrad M. Yu, Wing C. Hui
  • Patent number: 5576627
    Abstract: A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: November 19, 1996
    Assignee: The Regents of the University of California
    Inventor: Thomas E. McEwan
  • Patent number: 5573012
    Abstract: A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: November 12, 1996
    Assignee: The Regents of the University of California
    Inventor: Thomas E. McEwan
  • Patent number: 5569624
    Abstract: A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 29, 1996
    Assignee: Regents of the University of California
    Inventor: Kurt H. Weiner
  • Patent number: 5570182
    Abstract: A method for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: October 29, 1996
    Assignee: Regents of the University of California
    Inventors: Howard Nathel, John H. Kinney, Linda L. Otis
  • Patent number: 5569783
    Abstract: The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by:(a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen,with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: October 29, 1996
    Assignee: The Regents of the University of California
    Inventors: Alexander R. Mitchell, Philip F. Pagoria, Robert D. Schmidt
  • Patent number: 5566341
    Abstract: An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: October 15, 1996
    Assignee: The Regents of the University of California
    Inventors: George P. Roberson, Michael F. Skeate
  • Patent number: 5565377
    Abstract: A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
    Type: Grant
    Filed: October 27, 1994
    Date of Patent: October 15, 1996
    Assignee: Regents of the University of California
    Inventors: Kurt H. Weiner, Thomas W. Sigmon
  • Patent number: 5563605
    Abstract: A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: October 8, 1996
    Assignee: The Regents of the University of California
    Inventor: Thomas E. McEwan
  • Patent number: 5563457
    Abstract: A quartet of parallel coupled planar triodes is removably mounted in a quadrahedron shaped PCB structure. Releasable brackets and flexible means attached to each triode socket make triode cathode and grid contact with respective conductive coatings on the PCB and a detachable cylindrical conductive element enclosing and contacting the triode anodes jointly permit quick and easy replacement of faulty triodes. By such orientation, the quad pulser can convert a relatively low and broad pulse into a very high and narrow pulse.
    Type: Grant
    Filed: August 27, 1993
    Date of Patent: October 8, 1996
    Assignee: The Regents of the University of California
    Inventor: Rex Booth
  • Patent number: 5556892
    Abstract: The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: September 17, 1996
    Assignee: Regents of the University of California
    Inventor: Richard W. Pekala
  • Patent number: 5554926
    Abstract: A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
    Type: Grant
    Filed: July 31, 1995
    Date of Patent: September 10, 1996
    Assignee: Regents of the University of California
    Inventors: John W. Elmer, Alan T. Teruya, Dennis W. O'Brien
  • Patent number: 5548403
    Abstract: An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: August 20, 1996
    Assignee: The Regents of the University of California
    Inventor: Gary E. Sommargren
  • Patent number: 5547715
    Abstract: A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: August 20, 1996
    Assignee: The Regents of the University of California
    Inventors: Troy W. Barbee, Jr., Timothy Weihs
  • Patent number: 5548257
    Abstract: A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.
    Type: Grant
    Filed: September 18, 1995
    Date of Patent: August 20, 1996
    Assignee: The Regents of the University of California
    Inventors: Malcolm Caplan, Clifford C. Shang
  • Patent number: 5548605
    Abstract: A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: August 20, 1996
    Assignee: The Regents of the University of California
    Inventors: William J. Benett, Raymond J. Beach, Dino R. Ciarlo
  • Patent number: 5545800
    Abstract: A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.
    Type: Grant
    Filed: July 21, 1994
    Date of Patent: August 13, 1996
    Assignee: Regents of the University of California
    Inventors: Ravindra S. Upadhye, Francis T. Wang
  • Patent number: 5541948
    Abstract: A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: July 30, 1996
    Assignee: The Regents of the University of California
    Inventors: William F. Krupke, Ralph H. Page, Laura D. DeLoach, Stephen A. Payne