Abstract: Small, low-cost wireless temperature sensors (120) are provided for sensing the temperature of servingware (121). Each temperature sensor preferably includes a substrate (124); at least one sensor element (122) positioned on the substrate; and an adhesive (126) for securing the sensor element to the substrate and for securing the temperature sensor to the servingware so that the sensor element may sense a temperature of the servingware. The temperature sensors may be used in conjunction with a reader/detector (136) operable to generate a magnetic field of magnitude sufficient to cause re-magnetization responses of the temperature sensor element and optional data elements to detect such responses, and to use the detected responses to determine the temperature of the servingware by means of a decoding algorithm. The temperature sensors can be used in closed-loop heating systems capable of controlling the heating of the servingware.
Abstract: A system for characterizing a compressed sensing apparatus is described which broadly includes a random vector generator for generating an input vector, a waveform generator in communication with the random vector generator for converting the input vector into an analog signal, a compressed sensing apparatus in communication with the digital-to-analog converter for determining a digital bit stream from the analog signal, a serial-to-parallel converter for converting the digital bit stream into an input vector; and an electronic processor in communication with the random number generator and the serial-to-parallel converter configured for determining a compressed sensing matrix.
Abstract: An integrated fluid catalytic cracking (FCC) and desulfurization system for processing hydrocarbon-containing fluids. The integrated system employs a cracking/desulfurization unit having a reactor, a regenerator, and a reducer. A mixture of solid FCC catalyst particulates and solid sulfur sorbent particulates are circulated through the reactor, regenerator, and reducer to provide for substantially continuous cracking and desulfurization of the hydrocarbon-containing fluid, as well as substantially continuous regeneration of both the FCC catalyst and the sulfur sorbent.