Patents Represented by Attorney Jay R. Pralle
  • Patent number: 7738763
    Abstract: A composite polymer fiber comprises a polymer filler material and a plurality of polymer scattering fibers disposed within the filler material. At least one of the filler material and the scattering fibers is formed of a birefringent material. The refractive indices of the filler material and the scattering fibers can be substantially matched for light incident in a first polarization state on the composite polymer fiber and unmatched for light incident in an orthogonal polarization state. The scattering fibers may be arranged to form a photonic crystal within the composite fiber. The composite fibers may be extruded and may be formed into a yarn, a weave or the like. If the filler material is soluble, it may be washed out of the yarn or weave, and the scattering fibers may then be infiltrated with a resin that is subsequently cured.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 15, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Olester Benson, Jr., James C. Breister, Robert L. Brott, Yeun-Jong Chou, Patrick R. Fleming, William J. Kopecky, Diane North, Roger J. Stumo, Kristin L. Thunhorst, Bruce B. Wilson
  • Patent number: 7707963
    Abstract: A system for forming a multi-layer film, where the system includes a backing support having a surface and a close-coupled unit configured to be disposed adjacent the surface of the backing support. The close-coupled unit includes a corona electrode and a coating die disposed at a downstream location along the surface from the corona electrode.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: May 4, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Scott L. Ciliske, Gregory F. King, Mark A. Strobel, Joel A. Getschel, Bert T. Chien
  • Patent number: 7695180
    Abstract: Illumination assemblies and systems using same are disclosed. The illumination assembly can include a reflective substrate, and a light source unit including one or more light sources capable of producing illumination light. The assembly can further include a first light extraction surface including an azimuthal beam widening topography, where the first light extraction surface is positioned such that the light source unit is between the first light extraction surface and the reflective substrate. The first light extraction surface can face the light source unit.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: April 13, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Craig R. Schardt, D. Scott Thompson, Kenneth A. Epstein, Brian W. Ostlie, Richard F. Griffith, Kenneth L. Smith
  • Patent number: 7599592
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. Where the fibers are non-circular in cross-section, the cross-section can be oriented within the polarizer.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: October 6, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Olester Benson, Jr., Robert L. Brott, Patrick R. Fleming, Shandon D. Hart, Andrew J. Ouderkirk
  • Patent number: 7537374
    Abstract: An edge-lit backlight having a light recycling cavity with concave transflector is disclosed. The edge-lit backlight has an output area and includes a back reflector facing the output area of the backlight. The backlight further includes a transflector that partially transmits and partially reflects incident light, the transflector being shaped to form a concave structure facing the back reflector to provide one or more recycling cavities therebetween, where the one or more recycling cavities substantially fill the output area of the backlight. The backlight further includes at least one light source positioned adjacent a first edge of the backlight. The at least one light source is operable to inject light into the one or more recycling cavities through an input surface of the one or more recycling cavities, where the input surface is substantially orthogonal to the output area, and where the at least one concave structure converges with the back reflector in a direction distal from the input surface.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 26, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Craig R. Schardt, D. Scott Thompson, John A. Wheatley, Dong Lu
  • Patent number: 7526164
    Abstract: A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: April 28, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Richard C. Allen, Patrick R. Fleming, Diane North, Andrew T. Ruff, Kristin L. Thunhorst
  • Patent number: 7510741
    Abstract: Methods of making an optical body include coating a mixture including a first cholesteric liquid crystal polymer, a second cholesteric liquid crystal monomer, a second cholesteric liquid crystal polymer formed from a portion of the second cholesteric liquid crystal monomer, and a solvent on a substrate. The first cholesteric liquid crystal polymer is different than the second cholesteric liquid crystal polymer. Then, forming from the mixture an optical body including a first layer, a second layer, and a third layer disposed between the first and second layer. The first layer includes a majority of the first cholesteric liquid crystal polymer. The second layer includes a majority of a second cholesteric liquid crystal monomer. The third layer includes the second cholesteric liquid crystal polymer.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: March 31, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Richard J. Pokorny, Marc D. Radcliffe, Steven D. Solomonson, Terence D. Spawn
  • Patent number: 7511783
    Abstract: Lighting devices are disclosed that include optical laminated bodies. An exemplary optical laminated body includes a polarizing layer, a first transparent film disposed closely to a front surface of the polarizing layer and a second transparent film disposed closely to a back surface of the polarizing layer. The polarizing layer includes a reflective polarizing film, and both of the first transparent film and the second transparent film are diffusive films. The lighting devices further include a light source supplying light to the optical laminated body through a light entry surface of the first transparent film of the optical laminated body, wherein the light source includes a plurality of diffusing points of a light diffusive substance disposed on a surface of the light source. The lighting device provides diffused-polarized light emitted from a light emitting surface of the second transparent film of the laminated body.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: March 31, 2009
    Assignee: 3M Innovative Properties Company
    Inventor: Kazuhiko Toyooka
  • Patent number: 7497608
    Abstract: An illumination system including a light source, a light guide including an output surface, emissive material positioned between the light source and the output surface of the light guide, and an interference reflector positioned between the emissive material and the output surface of the light guide is disclosed. The light source emits light having a first optical characteristic. The emissive material emits light having a second optical characteristic when illuminated with light having the first optical characteristic. The interference reflector substantially transmits light having the second optical characteristic and substantially reflects light having the first optical characteristic.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: March 3, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: John A. Wheatley, Andrew J. Ouderkirk, Michael F. Weber, Kenneth A. Epstein, James E. Watson
  • Patent number: 7468204
    Abstract: Modified copolyesters having relatively low refractive indices and relatively high glass transition temperatures are disclosed. These modified copolyesters can be used in forming one or more layers in an optical film, such as a multilayer polymer film.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 23, 2008
    Inventors: Timothy J. Hebrink, Martin E. Denker, Bert T. Chien, Matthew B. Johnson, Richard J. Thompson, Kristopher J. Derks, William W. Merrill, Fuming B. Li
  • Patent number: 7456805
    Abstract: A display includes a solid state light device and a spatial light modulator in optical communication with the solid state light device. The solid state light device includes an array of solid state radiation sources to generate radiation, where each solid state radiation source includes a controllable radiation output. The solid state light device further includes an array of optical concentrators, where each optical concentrator receives radiation from a corresponding one of the array of solid state radiation sources. The solid state light device further includes a plurality of optical fibers, where each of the plurality of optical fibers includes an input end that receives concentrated radiation from a corresponding optical concentrator. The spatial light modulator includes a plurality of controllable elements operable to modulate light from the solid state light device. The display can be used in a variety of applications.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: November 25, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Michael A. Meis
  • Patent number: 7446827
    Abstract: In a directly-illuminated liquid crystal display (LCD), for example an LCD monitor or an LCD-TV, a number of light management films, including a diffuser layer, lie between the light source and the LCD panel to provide bright, uniform illumination. The diffuser layer is attached to a substrate which is separate from the light source and the LCD panel, or may be attached to either the LCD panel or, when using a two dimensional light source, to the light source. The other light management layers may also be attached to the separate substrate or to the LCD panel or two-dimensional light source. High levels of illumination uniformity at the LCD may be achieved with a uniform (non-patterned) diffuser, even with relatively low levels of diffusion, when the diffuser is used with a brightness enhancing layer.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: November 4, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Byungsoo Ko, Mark D. Gehlsen, Chingwen Chen, Robert M. Emmons, James W. Laumer, Ji-Hyung Kim, Ji-Hwa Lee, Kang-il Seo, Ryan T. Fabick, Linda M. Rivard, Kenneth A. Epstein, Chideuk Kim, Youngsoo Park
  • Patent number: 7436469
    Abstract: In a directly-illuminated liquid crystal display (LCD), for example an LCD monitor or an LCD-TV, a number of light management layers lie between the light source and the LCD panel to provide bright, uniform illumination. The light management layers, including, for example, a diffuser, a reflective polarizer and a brightness enhancing layer, are contained in a light management unit that is formed from two subassemblies. The two subassemblies each contain a substrate and are attached together so as to leave a gap between the two subassemblies. The diffuser is located in one of the subassemblies, and the other light management layers may be in either of the subassemblies, or may be disposed in the gap between the subassemblies.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: October 14, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Mark D. Gehlsen, Chingwen Chen, Byungsoo Ko, Robert M. Emmons, James W. Laumer, Ryan T. Fabick, Linda M. Rivard, Kenneth A. Epstein, Youngsoo Park, Chideuk Kim, James A. Stevenson
  • Patent number: 7427146
    Abstract: Light-collecting illumination systems are disclosed, which include a light source module, a first meniscus lens having a convex side and a concave side and a second meniscus lens having a convex side and a concave side. The concave side of the second meniscus lens is adjacent to the convex side of the first meniscus lens and the concave side of the first meniscus lens faces the light source module for receiving light therefrom. In addition, light-collecting illumination systems are disclosed, which include a plurality of light source modules and a system of optical elements comprising a plurality of pairs of meniscus lenses, each pair being associated with a light source module.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: September 23, 2008
    Assignee: 3M Innovative Properties Company
    Inventor: Arlie R. Conner
  • Patent number: 7413317
    Abstract: A light exposure system is used to expose an alignment layer formed of anistropically absorbing molecules so as to allow alignment of subsequently applied liquid crystal polymer (LCP) molecules. The light incident on the alignment layer is polarized. When a single polarizer is used, the azimuthal polarization direction varies across the substrate carrying the alignment layer. Various approaches to reducing the azimuthal polarization variation may be adopted, including the introduction of various types of polarization rotation reduction element and in selecting an appropriate tilt angle for the light source. Furthermore, a reflective structure may be inserted between the light source and the alignment layer. Use of the reflective structure increases the total amount of light incident on the alignment layer.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: August 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey L. Solomon, Michael C. Lea, Richard C. Allen
  • Patent number: 7407313
    Abstract: An illumination system including a light source, light guides coupled to the light source, each including an input surface and an output surface, emissive material positioned to receive light from at least one light guide, and a first interference reflector positioned between the emissive material and the output surfaces of the light guides is disclosed. The light source emits light having a first optical characteristic. The emissive material emits light having a second optical characteristic when illuminated with light having the first optical characteristic. The first interference reflector substantially transmits light having the first optical characteristic and substantially reflects light having the second optical characteristic.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: August 5, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Craig R. Schardt, John C. Schultz, Andrew J. Ouderkirk, John A. Wheatley, Michael F. Weber, Kenneth A. Epstein, James E. Watson
  • Patent number: 7406239
    Abstract: A polarizer is formed with an arrangement of polymer fibers substantially parallel within a polymer matrix. The polymer fibers are formed of at least first and second polymer materials. At least one of the polymer matrix and the first and second polymer materials is birefringent, and provides a birefringent interface with the adjacent material. Light is reflected and/or scattered at the birefringent interfaces with sensitivity to the polarization of the light. In some embodiments, the polymer fibers are formed as composite fibers, having a plurality of scattering polymer fibers disposed within a filler to form the composite fiber. In other embodiments, the polymer fiber is a multilayered polymer fiber. The polymer fibers may be arranged within the polymer matrix as part of a fiber weave.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: July 29, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Richard C. Allen, Olester Benson, Jr., James C. Breister, Yeun-Jong Chou, Patrick R. Fleming, William J. Kopecky, Diane North, Roger J. Stumo, Kristin L. Thunhorst, Bruce B. Wilson, Harold E. Rude
  • Patent number: 7403680
    Abstract: An illumination system has individual light emitting diodes (LEDs) that are optically coupled via reflective couplers to respective optical fibers. The respective optical fibers may then be bundled. The shape of the reflective coupler may be selected to increase the coupling efficiency between the LED and its optical fiber. The reflective coupler may be formed as an aperture through a sheet, having a first shape at the input side and a second shape, different form the first shape, at the second side. The reflective coupler may be formed as an aperture through a body, where at least a first portion of the interior surface of the aperture conforms to a two-dimensional (2-D) surface and at least a second portion of the interior surface conforms to a three-dimensional (3-D) surface.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 22, 2008
    Assignee: 3M Innovative Properties Company
    Inventor: John J. Simbal
  • Patent number: 7390097
    Abstract: An illumination system, used for illuminating a target area, includes a plurality of light generating elements and a plurality of light collection units disposed to collect light from respective light generating elements. Imaging lens units are disposed to relay images of respective light collection units to the target area, light from different light generating elements overlapping at the target area. In some embodiments, the illumination system also includes color combining elements to combine light from differently colored light generating elements. The illumination system may be used in a projection system, with the light from the illumination system incident on an image-forming device placed at the target area.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: June 24, 2008
    Assignee: 3M Innovative Properties Company
    Inventor: Simon Magarill
  • Patent number: 7386212
    Abstract: A composite polymer fiber comprises a polymer filler material and a plurality of polymer scattering fibers disposed within the filler material. At least one of the filler material and the scattering fibers is formed of a birefringent material. The refractive indices of the filler material and the scattering fibers can be substantially matched for light incident in a first polarization state on the composite polymer fiber and unmatched for light incident in an orthogonal polarization state. The scattering fibers may be arranged to form a photonic crystal within the composite fiber. The composite fibers may be extruded and may be formed into a yarn, a weave or the like. If the filler material is soluble, it may be washed out of the yarn or weave, and the scattering fibers may then be infiltrated with a resin that is subsequently cured.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: June 10, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Olester Benson, Jr., Robert L. Brott, Patrick R. Fleming, Catherine A. Leatherdale, Terence D. Neavin, Diane North