Patents Represented by Attorney, Agent or Law Firm Jim Wheelington
  • Patent number: 7229946
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7196233
    Abstract: Disclosed is a process for the preparation of alkylene glycols from the corresponding alkylene oxide, such as ethylene glycol from ethylene oxide, in the presence of water, a catalyst and, optionally, carbon dioxide. The catalyst contains an amphoteric compound, such as such as (ethylenedinitrilo) tetraacetic acid (EDTA). These befunctional compounds have both acid and base moieties. Preferably, a compound useful in the present invention forms a buffered solution in water, i.e., the acid and base moieties do not completely disassociate. The pH of the buffered solution should be 2-10, preferably 5-10, more preferably 4-9. A compound useful in the present invention is preferably organic with the base moiety and the acid moiety being separated by one to four carbon atoms.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: March 27, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: John S. Ledford, Jaap W. Van Hal, Xiankuan Zhang
  • Patent number: 7186872
    Abstract: A catalyst of a gallium zeolite on which platinum (Pt/Ga-ZSM-5) has been deposited may be used for aromatization of alkanes having two to six carbon atoms per molecule, such as ethane, propane, butane, etc., to aromatics, such as benzene, toluene and xylenes (BTX). The gallium zeolite contains gallium and silicon in the framework of the zeolite structure. The zeolite structure may be of MFI, FAU, TON, MFL, VPI, MEL, AEL, AFI, MWW or MOR, but preferably, the zeolite has a MFI structure, more preferably is ZSM-5 MFI zeolite. According to the IUPAC recommendations, an example of the sodium form of the zeolite would be represented as: |Nax·(H2O)z|[GaxSiyO2y+3x/2]?MFI where x=0.1–25; y=60–100; and z=0.1–10. Platinum may be deposited on the gallium zeolite by ion exchange or impregnation.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: March 6, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Gopalakrishnan G. Juttu, Robert Scott Smith
  • Patent number: 7186670
    Abstract: A process for the vapor phase ammoxidation of alkanes and olefins with a catalyst of the general empirical formula: VSbaMbQcOx wherein M is at least one element selected from magnesium, aluminum, zirconium, silicon, hafnium, titanium and niobium, Q is at least one element selected from rhenium, tungsten, molybdenum, tantalum, manganese, phosphorus, cerium, tin, boron, scandium, bismuth, gallium, indium, iron, chromium, lanthanum, yttrium, zinc, cobalt, nickel, cadmium, copper, strontium, barium, calcium, silver, potassium, sodium and cesium, a is 0.5 to 20, b is 2 to 50, c is 0 to 10 and x is determined by the valence requirements of the elements present. The process has a co-feed of gaseous carbon dioxide with an alkane (paraffin) and/or alkene, ammonia and an oxygen-containing gas which react in the presence of the catalyst to form a nitrile and by-products.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 6, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Edouard A. Mamedov, Kathleen A. Bethke, Shahid N. Shaikh, Armando Araujo, Neeta K. Kulkarni
  • Patent number: 7186871
    Abstract: Aromatization of alkanes having one to four carbon atoms per molecule to aromatics, such as benzene, toluene and xylenes (BTX), uses a catalyst of a crystalline zeolite on which platinum has been deposited, specifically a platinum-containing ZSM-5. A byproduct of the process is a light gas fraction of methane and ethane. The use of a platinum-containing ZSM-5 catalyst in an alkane aromatization process, such as the Cyclar process, suppresses the formation of methane and increases selectivity to BTX. The high content of ethane relative to methane in the light gas fraction allows this process effluent to be a feedstream for a cracker.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: March 6, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott F. Mitchell, Gopalakrishnan G. Juttu, Robert Scott Smith
  • Patent number: 7161046
    Abstract: Disclosed is a process for the preparation of alkylene glycols from the corresponding alkylene oxide, such as ethylene glycol from ethylene oxide, in the presence of water, a catalyst and, optionally, carbon dioxide. The catalyst is a SALEN-type compound which contains an amino group and an oxy or hydroxy group connected by a hydrocarbon, such as an alkyl or an alkylaryl. The SALEN-type compounds may be Schiff bases, i.e., a condensate product of a primary amine with an aldehyde, ketone or an alcohol. The SALEN-type compound may be a mono or bis compound and may be complexed with a Group 4-14 metal, such as aluminum, tin, vanadium, chromium, manganese, iron, cobalt or platinum.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: January 9, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Jaap W. Van Hal, John S. Ledford, Xiankuan Zhang
  • Patent number: 7009075
    Abstract: The invention disclosed is a process for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process with a mixed metal oxide catalyst composition having the general formula: MoVaNbbTecSbdMeOx wherein M is optional and may be one or more selected from silver, silicon, sulfur, zirconium, titanium, aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum. This catalyst may be prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 7, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventor: Paulette N. Hazin
  • Patent number: 6946422
    Abstract: A process for making a catalyst containing oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals, such as tungsten, cobalt, nickel, antimony, magnesium, zinc, phosphorus, potassium, rubidium, thallium, manganese, barium, chromium, boron, sulfur, silicon, aluminum, titanium, cerium, tellurium, tin, vanadium, zirconium, lead, cadmium, copper and niobium wherein metal compounds are dissolved and then precipitated as a catalyst precursor which is calcined to form a mixed metal oxide catalyst. The process of the present invention uses an organic acid, such as acetic acid, instead of nitric acid to dissolve the bismuth compound and, optionally, other metal compounds. The catalyst synthesized by this process may be used for the production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 20, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6916963
    Abstract: Water tolerant Lewis acids are used in a process for the preparation of alkylene glycols by catalytic hydration of the corresponding alkylene oxide. The water tolerant Lewis acids can be a metal salt of a non-coordinating or weakly coordinating anion and a Group IIIB, rare earth or lanthanide, actinide or Group IVB cation. Optionally, carbon oxide may also be present. Examples of such water tolerant Lewis acids are scandium triflate, europium triflate, hafnium triflate, yttrium triflate, lanthanum triflate and ytterbium triflate. The catalyst may contain a coordinating anion instead, examples of which are scandium sulfate [Sc2(SO4)3], scandium chloride [ScCl3], scandium acetate [Sc(OAc)3] and scandium nitrate [Sc(NO3)3].
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: July 12, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Jaap W. van Hal, Dorai Ramprasad
  • Patent number: 6794332
    Abstract: A shell impregnated catalyst of Pd—Au produced on a silica support by impregnating the support with aqueous solutions of palladium and gold salts or acids and thereafter precipitating water insoluble compounds of Pd and Au on the support with alkali metal silicate or hydroxide fixing agents, then drying the support which has precipitated compounds of Pd and Au on its surface and reducing the surface precipitated compounds of Pd and Au until substantially all of the Pd and Au contents are reduced to a free metal state, after which the catalyst precursor is impregnated with potassium acetate and then dried. Improvements in the catalyst are realized by certain factors in process and composition.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: September 21, 2004
    Assignee: Saudi Basic Industries Corporation
    Inventors: Alla Konstantin Khanmamedova, Binghui Li, Robin J. Bates, Yuangen Ken Yin
  • Patent number: 6784333
    Abstract: A catalyst, a process for making the catalyst and a process for using the catalyst in aromatization of alkanes to aromatics, specifically, aromatization of alkanes having two to six carbon atoms per molecule, such as propane, to aromatics, such as benzene, toluene and xylene. The catalyst is an aluminum-silicon-germanium zeolite on which platinum has been deposited. Germanium is in the framework of the crystalline zeolite. Platinum is deposited on the zeolite. The catalyst may be supported on magnesia, alumina, titania, zirconia, thoria, silica, boria or mixtures thereof. The catalyst may contain a sulfur compound on the surface of the catalyst. The sulfur compound may be added to the catalyst in a pretreatment process or introduced with the hydrocarbon feed to contact the catalyst during the aromatization process.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: August 31, 2004
    Assignee: Saudi Basic Industries Corporation
    Inventors: Gopalakrishnan G. Juttu, Robert Scott Smith
  • Patent number: 6710011
    Abstract: A catalyst composition for the vapor phase ammoxidation of alkanes and olefins of the general empirical formulae: VSbaMbOx VSbaMbM′b′Ox VSbaMbQcOx VSbaMbQcQ′c′Ox wherein M and M′ are at least one element selected from magnesium, aluminum, zirconium, silicon, hafnium, titanium and niobium, M and M′ being different, Q and Q′ are at least one element selected from rhenium, tungsten, molybdenum, tantalum, manganese, phosphorus, cerium, tin, boron, scandium, bismuth, gallium, indium, iron, chromium, lanthanum, yttrium, zinc, cobalt, nickel, cadmium, copper, strontium, barium, calcium, silver, potassium, sodium and cesium, Q and Q′ being different, a is 0.5 to 20, b is 2 to 50, b′ is 0 to 50, c is 0 to 10, c′ is 0 to 10 and x is determined by the valence requirements of the elements present.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 23, 2004
    Assignee: Saudi Basic Industries Corporatioin
    Inventors: Edouard A. Mamedov, Kathleen A. Bethke, Shahid N. Shaikh, Armando Araujo, Neeta K. Kulkarni, Andrei Khodakov
  • Patent number: 6696594
    Abstract: A process for the conversion of aldehydes to esters, specifically acrolein or methacrolein to methyl acrylate or methyl methacrylate, respectively. Essentially in the absence of water, an aldehyde is contacted with an oxidizing agent to form an intermediate and then the intermediate is contacted with a diol or an alcohol to form an ester or diester. Preferably, the oxidizing agent is also a chlorinating agent. Specifically, acrolein or methacrolein is contacted with an oxidizing/chlorinating agent, such as t-butyl hypochlorite, and the chlorinated compound is contacted with an alcohol, such as methanol, to form methyl acrylate or methyl methacrylate, respectively. Generally, the order of addition is for the oxidizing agent to be added to the aldehyde, specifically for t-butyl hypochlorite to be added to acrolein or methacrolein, and for the diol or alcohol to be added to the intermediate, specifically for the methanol to be added to the reaction product of acrolein or methacrolein and t-butyl hypochlorite.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: February 24, 2004
    Assignee: Saudi Basic Industries Corporation
    Inventors: Andrew T. Au, Jean-Pierre Lawanier, David Adam Flosser
  • Patent number: 6239058
    Abstract: The invention provides a process for commercial production of syndiotactic polyolefins using a metallocene catalyst supported on silica treated with MAO. The invention includes contacting the supported metallocene catalyst with a trialkylaluminum and aging the catalyst 12 to 24 hours prior to polymerization.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: May 29, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Christopher G. Bauch, B. R. Reddy, David J. Rauscher, Kevin P. McGovern
  • Patent number: 6225251
    Abstract: The invention provides a polymerization process with improved catalyst activity of a metallocene catalyst supported on silica treated with MAO, a process for supporting a metallocene compound on silica treated with MAO, a metallocene catalyst supported on silica treated with MAO within a certain temperature range and a process for making a metallocene catalyst supported on silica treated with MAO. The invention includes supporting the metallocene compound on a MAO-treated silica at a temperature of below 0° C. The supported catalyst is activated with an aluminum alkyl. The catalyst may be prepolymerized in a tubular reactor prior to being introduced into the polymerization reaction zone.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: May 1, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Margarito Lopez, B. Raghava Reddy, Theodore G. Harris
  • Patent number: 6218472
    Abstract: A process for the preparation of polyethylene resins having a multimodal molecular weight distribution which comprises: (i) contacting ethylene monomer and a comonomer comprising an alpha-olefin having from 3 to 10 carbon atoms with a first catalyst system in a first reactor under first polymerization conditions in a slurry process to produce a first polyethylene having a first molecular weight an HLMI of not more than 0.5 g/10 min and a first density of not more than 0.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: April 17, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Abbas Razavi, Jacques Michel
  • Patent number: 6214947
    Abstract: A process for preparing a supported chromium-based catalyst for the production of high density polyethylene, by polymerising ethylene, or copolymerising ethylene and an alpha-olefinic comonomer comprising 3 to 10 carbon atoms, which comprises the steps of: a) providing an alumina-containing support; b) depositing a chromium compound on the support to form a chromium-based catalyst; c) dehydrating the chromium-based catalyst to remove physically adsorbed water by heating the catalyst at a temperature of at least 300° C. in an atmosphere of dry, inert gas; d) titanating the chromium-based catalyst at a temperature of at least 300° C.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: April 10, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Bodart Philippe
  • Patent number: 6207093
    Abstract: The present invention relates to improved processability of polyolefin films through the addition to the basic isotactic polypropylene (iPP) polymer of a syndiotactic polypropylene (sPP) in an amount within the range of about 2 to 10 weight percent and of a resin or rosin modifier in an amount within the range of 1 to 30 weight percent. Preferably, the composition could contain syndiotactic propylene in an amount within the range of about 2 to 5 weight percent. Preferably, about 3 weight percent of syndiotactic propylene is present in the polyolefin composition. The resin or rosin modifier could, preferably, be present in an amount within the range of 5 to 10 weight percent. Preferably, the composition should contain about 10 weight percent of the modifier. The present invention encompasses both the resulting polyolefin films and the process for producing such films.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: March 27, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Aiko Hanyu, William R. Wheat
  • Patent number: 6194528
    Abstract: A process for producing polyethylene having impact resistance, the process comprising polymerizing ethylene, or copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms, in the presence of a chemically reduced chromium-based catalyst containing in a support thereof from 2 to 3 wt % of titanium, based on the weight of the catalyst. The invention also provides a chromium-based catalyst for the production of polyethylene by polymerizing ethylene or copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms, the catalyst being chemically reduced and containing in a support from 2 to 3 wt % of titanium, based on the weight of the catalyst.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: February 27, 2001
    Assignee: Fina Research, S.A.
    Inventor: Guy Debras