Patents Represented by Attorney John T. Raffle
  • Patent number: 6766202
    Abstract: The present invention provides systems, apparatus and methods for selective applying energy to a patient's dermis tissue to generate the growth of new collagen in this tissue, while minimizing the effect on the outer epidermis layer, thereby minimizing or suppressing the wound healing phase of the procedure. In one aspect of the invention, a method includes positioning a first electrode adjacent to, or in contact with, a region on or within a patient's skin, and applying a sufficient high frequency voltage between the first electrode and a second electrode to create a heat injury to a target tissue within the patient's dermis layer without ablating the epidermis layer overlying the target tissue. Typically, the voltage applied to the first and second electrodes is sufficient to induce heating of the dermis layer to about 60°-80° C., preferably about 65°-75° C.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: July 20, 2004
    Assignee: ArthroCare Corp.
    Inventors: Ronald A. Underwood, Jean Woloszko
  • Patent number: 6749604
    Abstract: A bi-polar electrocautery needle comprising an inner electrode on outer electrode and recoverable insulating-locking member for insulting the electrode from one another and locking them into relative position to one another. And the method of making the bi-polar electrocautery needle in accordance with this invention, the steps including: expanding recoverable dielectric material over an inner electrode; and recovering the material between the electrodes for insulating and locking the electrodes into relative position with one another.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: June 15, 2004
    Assignee: Arthrocare Corporation
    Inventors: Philip E. Eggers, Hira V Thapliyal
  • Patent number: 6746447
    Abstract: Electrosurgical methods, systems, and apparatus for the controlled ablation of tissue from a target site of a patient. An electrosurgical instrument includes a working portion having a plurality of working zones differentiated according to their relative rates of aspiration and ablation. The instrument further includes an aspiration channel in communication with a plurality of aspiration ports, and a plurality of active electrodes disposed on the working portion. Each of the plurality of working zones may have at least one of the plurality of active electrodes and at least one of the plurality of aspiration ports. The aspiration rate of each working zone is dependent, inter alia, on the number, size, and distribution of the aspiration ports on that zone. In one embodiment, the ablation rate of a working zone is inversely related to the aspiration rate of that zone. Each of the plurality of active electrodes is adapted for ablating tissue to form low molecular weight ablation by-products.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: June 8, 2004
    Assignee: Arthrocare Corporation
    Inventors: Terry S. Davison, Theodore C. Ormsby, Christopher L. Willink
  • Patent number: 6736847
    Abstract: The invention relates to an anchoring device for urging a ligament transplant against the wall of a bone hole during ligament replacement and for fixing the anchor in position in the said bone hole. The device has a first component and a second component designed for mutual sliding co-operation between a first anchor inserting position and a second fixation position. The sliding co-operation is provided along respective parallel inner mating surfaces of each component which surfaces are each in angular relation to the respective component outer surfaces and in opposed angular relation to each other so that in the anchor insertion position the width of the said anchoring device is in an elongate narrow mode with respect to a bone hole and, in the fixation position, the width of the said anchoring device is in a compressed wide mode to thereby urge the ligament against the wall of the bone hole. A method of ligament fixation in a bone hole is also disclosed.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: May 18, 2004
    Assignee: Arthrocare Corporation
    Inventors: Volkmar Seyr, Helmut Goreis, Clive Reay-Young
  • Patent number: 6726684
    Abstract: Methods and apparatus for selectively applying electrical energy to a target location within a patient's body, particularly including tissue in the spine. In a method of the invention high frequency (RF) electrical energy is applied to one or more active electrodes on an electrosurgical probe in the presence of an electrically conductive fluid to remove, contract or otherwise modify the structure of tissue targeted for treatment. In one aspect, a dura mater and spinal cord are insulated from the electrical energy by an insulator positioned on a non-active side of the probe. In another aspect, a plasma is aggressively formed in the electrically conductive fluid by delivering a conductive fluid to a distal end portion of the probe and aspirating the fluid from a location proximal of the return electrode.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 27, 2004
    Assignee: ArthroCare Corporation
    Inventors: Jean Woloszko, David C. Hovda, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6719754
    Abstract: Systems and methods are provided for removing adipose or fatty tissue underlying a patient's epidermis is disclosed (e.g., liposuction, abdominoplasty, and the like). The method includes positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target region of fatty tissue. A high frequency voltage difference is applied between the active and return electrodes, and the fatty tissue or fragments of the fatty tissue are aspirated from the target region. The high frequency voltage either softens the fatty tissue or completely removes at least a portion of the tissue. In both embodiments, the remaining fatty tissue is more readily detached from the adjacent tissue in the absence of energy, and less mechanical force is required for removal. The bipolar configuration of the present invention controls the flow of current to the immediate region around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through the patient.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 13, 2004
    Assignee: ArthroCare Corporation
    Inventors: Ronald A. Underwood, Stephen M. Brunell, Michael A. Baker, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6712811
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within of a patient's body, particularly including tissue in the spine. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals in the presence of electrically conductive fluid to remove, contract or otherwise modify the structure of tissue structures. In one aspect of the invention, a method is provided for treating herniated discs within a patient's spine by applying sufficient electrical energy to the disc tissue to reduce a volume of the disc, thereby relieving pressure on a spinal nerve. In one embodiment, the high frequency voltage is sufficient to ablate a portion of the nucleus pulposis, either the extruded portion outside of the annulus or a portion or all of the pulposis within the annulus.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 30, 2004
    Assignee: Arthrocare Corporation
    Inventors: Ronald A. Underwood, Terry S. Davison, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6659106
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within the head and neck of a patient's body, particularly including tissue in the ear, nose and throat. In one aspect, a method is provided for reducing the volume of enlarge swollen tissue in the patient's nose, such as swollen nasal tissue, mucus membranes, turbinates, polyps, neoplasms, cartilage (e.g., the nasal septum) or the like. In particular, the turbinates are treated by positioning one or more electrode terminal(s) adjacent to the turbinates, and delivering electrically conductive fluid, such as isotonic saline, to the nasal cavity to substantially surround the electrode terminal(s) with the fluid.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: December 9, 2003
    Assignee: ArthroCare Corporation
    Inventors: David C. Hovda, Hira V. Thapliyal, Philip E. Eggers, Maria B. Ellsberry
  • Patent number: 6652560
    Abstract: The invention describes a bone anchor 76 comprising a head region 94 and supporting legs 78 and a method for soft tissue-bone grafting using the said bone anchor 76. A hole 84 is drilled through cortical bone 82 forming a socket 70 in a cancellous bone 90, and the bone anchor 76 is inserted therein thereby trapping ligaments 88a and 88b between the radially outermost portion of the anchor 76 and the inside surface of the socket 70. An optional expansion peg (not shown) is inserted into a hole 86 within the bone anchor 76, thereby causing the proximal ends of the legs 70 of the bone anchor 76 to expand radially causing the ligaments 88a and 88b to closely abut the cancellous bone 90 thereby encouraging the grafting process.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 25, 2003
    Assignee: ArthroCare Corporation
    Inventors: Peter Gerke, Dietmar Hein, Clive Reay-Young, Nicholas Woods
  • Patent number: 6632193
    Abstract: Systems and methods are provided for removal (ablation) or modification of soft tissue with high frequency voltage through a capacitive charge process. Specifically, one of the conductors of a capacitor device maybe positioned adjacent to, or in the region of, a body structure. The other conductor is spaced, and electrically insulated from, the first conductor. A high frequency voltage is applied across the conductors to create a potential difference that results in a charge on the conductors and creates an electric field therebetween. High frequency alternating current flows between the conductors to a degree dependent on the capacitance and the current frequency. The charge on the first conductor is sufficient to modify the adjacent tissue. In some variations the charge is sufficient to heat the tissue for tissue coagulation or tissue shrinkage (i.e., collagen contraction). In other variations, the charge is sufficient to ablate or volumetrically remove the tissue.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: October 14, 2003
    Assignee: ArthroCare Corporation
    Inventors: Paul O. Davison, Jean Woloszko, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6632220
    Abstract: An electrosurgical probe (10) comprises a shaft (13) having an electrode array (58) at-its distal end and a connector (19) at its proximal end for coupling the electrode array to a high frequency power supply (28). The shaft includes a return electrode (56) recessed from its distal end and enclosed within an insulating jacket (18). The return electrode defines an inner passage (83) electrically connected to both the return electrode and the electrode array for passage of an electrically conducting liquid (50). By applying high frequency voltage to the electrode array and the return electrode, the electrically conducting liquid generates a current flow path between the return electrode and the electrode array so that target tissue may be cut or ablated. The probe is particularly useful in dry environments, such as the mouth or abdominal cavity, because the electrically conducting liquid provides the necessary return current path between the active and return electrodes.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: October 14, 2003
    Assignee: ArthroCare Corp.
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Patent number: 6623454
    Abstract: Systems and methods are provided for performing electrosurgical interventions, such as selectively contracting soft collagen tissue and other body structures, while limiting thermal damage or molecular dissociation of such tissue and limiting the thermal damage to tissue adjacent to and underlying the treatment site. The systems and methods of the present invention are particularly useful for surgical procedures in electrically conducting environments, such as arthroscopic procedures in the joints, e.g., shoulder, knee, hip, hand, foot, elbow or the like. The present invention is also useful in relatively dry environments, such as treating and shaping the cornea, and dermatological procedures involving surface tissue contraction of tissue underlying the surface of the skin for tissue rejuvenation, wrinkle removal and the like.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: September 23, 2003
    Assignee: Arthrocare Corp.
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Patent number: 6602248
    Abstract: Apparatus and methods for treating an intervertebral disc by ablation of disc tissue. A method of the invention includes positioning at least one active electrode within the intervertebral disc, and applying at least a first high frequency voltage between the active electrode(s) and one or more return electrode(s), wherein the volume of the nucleus pulposus is decreased, pressure exerted by the nucleus pulposus on the annulus fibrosus is reduced, and discogenic pain of a patient is alleviated. In other embodiments, a curved or steerable probe is guided to a specific target site within a disc to be treated, and the disc tissue at the target site is ablated by application of at least a first high frequency voltage between the active electrode(s) and one or more return electrode(s). A method of making an electrosurgical probe is also disclosed.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: August 5, 2003
    Assignee: Arthro Care Corp.
    Inventors: Lewis Sharps, David C. Hovda, Jean Woloszko, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6595990
    Abstract: Systems, apparatus and methods are provided for canalizing or boring channels, divots, trenches or holes through tissue to revascularize the region around this tissue. In one method, an electrode terminal is positioned in close proximity to a target site and a high frequency voltage difference is applied between the electrode terminal and a return electrode to volumetrically remove or ablate tissue at the target site. The electrode terminal(s) may be translated relative to the body structure during or after the application of electrical energy to sculpt a void within the body structure, such as a hole, channel, stripe, crater, divot or the like. The present invention may be useful for revascularization of a healthy meniscus, or a torn or damaged meniscus during a repair procedure.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: July 22, 2003
    Assignee: ArthroCare Corporation
    Inventors: Allan Weinstein, Philip E. Eggers, Hira V. Thapliyal
  • Patent number: 6589237
    Abstract: Electrosurgical methods and apparatus for removing tissue from a target site of a patient. An electrosurgical suction apparatus includes an aspiration channel in communication with a distal aspiration port, and an electrode support having a plurality of active electrodes disposed thereon, the plurality of active electrodes spanning the aspiration port. Each of the plurality of active electrodes is adapted for removing tissue from a target site to form low molecular weight ablation by-products. Each of the plurality of active electrodes is also adapted for digesting resected tissue fragments to yield low molecular weight ablation by-products. Ablation by-products and resected tissue fragments are readily removed from the target site via an aspiration stream flowing proximally through the aspiration channel.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: July 8, 2003
    Assignee: ArthroCare Corp.
    Inventors: Jean Woloszko, Theodore C. Ormsby, Christopher L. Willink, Terry S. Davison, Steve Masterson
  • Patent number: 6575968
    Abstract: An electrosurgical ablation probe is provided having a shaft with a proximal end portion and a tongue-shaped distal end portion sized to fit within confined (e.g., narrow) spaces within the patient's body, such as the spaces around the articular cartilage between the femur and tibia and the spaces between adjacent vertebrae in the patient's spine. The probe includes at least one active electrode integral with or coupled to the tongue-shaped distal end portion and a connector on the proximal end portion for coupling the active electrode to an electrosurgical generator. The tongue-shaped distal end portion is substantially planar, and it offers a low profile, to allow access to confined spaces without risking iatrogenic injury to surrounding tissue, such as articular cartilage.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: June 10, 2003
    Assignee: ArthroCare Corp.
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Patent number: 6557559
    Abstract: Vascular catheter comprises a catheter body having a proximal end, a distal end, and an electrode array disposed near the distal end. The electrode array is located proximally of a common electrode, typically located on a movable guidewire, and includes a plurality of isolated electrode terminals. By positioning the common electrode within a stenotic region and contacting a leading surface of the stenotic region with the electrode array, the stenotic material can be heated by applying a high frequency voltage between the electrode array and the common electrode. The stenotic region can thus be recannalized by advancing the distal end of the catheter body through the heated stenotic material.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: May 6, 2003
    Assignee: ArthroCare Corporation
    Inventors: Philip E. Eggers, Hira V Thapliyal
  • Patent number: 6544261
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within the head and neck of a patient's body, particularly including tissue in the ear, nose and throat. The present invention includes a channeling technique in which small holes or channels are formed within tissue structures in the mouth, such as the tonsils, tongue, palate and uvula, and thermal energy is applied to the tissue surface immediately surrounding these holes or channels to cause thermal damage to the tissue surface, thereby stiffening the surrounding tissue structure. Applicant has discovered that such stiffening of certain tissue structures in the mouth and throat helps to prevent the tissue structure from obstructing the patient's upper airway during sleep.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: April 8, 2003
    Assignee: ArthroCare Corporation
    Inventors: Maria B. Ellsberry, David C. Hovda, Jean Woloszko, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6540741
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within of a patient's body, particularly including tissue in the spine. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals in the presence of electrically conductive fluid to remove, contract or otherwise modify the structure of tissue structures. In one aspect of the invention, a method is provided for treating herniated discs within a patient's spine by applying sufficient electrical energy to the disc tissue to reduce a volume of the disc, thereby relieving pressure on a spinal nerve. In one embodiment, the high frequency voltage is sufficient to ablate a portion of the nucleus pulposis, either the extruded portion outside of the annulus or a portion or all of the pulposis within the annulus.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: April 1, 2003
    Assignee: Arthrocare Corporation
    Inventors: Ronald A. Underwood, Terry S. Davison, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6500173
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within of a patient's body, particularly including tissue in the spine. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals in the presence of electrically conductive fluid to remove, contract or otherwise modify the structure of tissue structures. In one aspect of the invention, a method is provided for treating herniated discs within a patient's spine by applying sufficient electrical energy to the disc tissue to reduce a volume of the disc, thereby relieving pressure on a spinal nerve. In one embodiment, the high frequency voltage is sufficient to ablate a portion of the nucleus pulposis, either the extruded portion outside of the annulus or a portion or all of the pulposis within the annulus.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: December 31, 2002
    Inventors: Ronald A. Underwood, Terry S. Davison, Hira V. Thapliyal, Philip E. Eggers