Patents Represented by Attorney Jonathan L. Schuchardt
  • Patent number: 6982337
    Abstract: A process for making N-vinyl-2-pyrrolidone (NVP) is disclosed. The process comprises dehydrating N-(2-hydroxyethyl)-2-pyrrolidone (HEP) in the presence of a catalyst and added water. Adding an effective amount of water into the dehydration process reduces the amount of N-ethyl-2-pyrrolidone (NEP) formed compared with the amount produced in the absence of the added water. Adding water can also sustain high conversions of HEP, minimize heavies formation, and improve selectivity to NVP. The process provides high-purity NVP and avoids a costly crystallization step.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: January 3, 2006
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Andrew P. Kahn
  • Patent number: 6958405
    Abstract: Catalysts useful for oxidation reactions are disclosed. The catalysts comprise a polymer-encapsulated titanium zeolite. The catalysts are easy to prepare and use, they are easy to recover and reuse, and they provide good conversions in a variety of important oxidation processes. The invention includes a process which comprises oxidizing an organic compound in the presence of hydrogen peroxide and a polymer-encapsulated titanium zeolite. In one example, the organic compound is propylene and the reaction product is propylene oxide.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: October 25, 2005
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Bi Le-Khac, Roger A. Grey
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6908973
    Abstract: A method for making single-site catalysts useful for olefin polymerization is disclosed. A nitrogen-functional heterocycle is first deprotonated with an alkyllithium compound, followed by reaction of this anionic ligand precursor with about 0.5 equivalents of a Group 4 transition metal tetrahalide in a hydrocarbon solvent at a temperature greater than about 10° C. to give an organometallic complex-containing mixture. When combined with exceptionally low levels of an activator (e.g., methyl alumoxane), the mixture actively polymerizes olefins to give polymers with a favorable balance of physical properties, including low density and narrow molecular weight distribution.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jia-Chu Liu
  • Patent number: 6908972
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson
  • Patent number: 6903170
    Abstract: Ethylene and optional comonomers are polymerized using a supported metallocene catalyst, an alumoxane activator, and triisobutylaluminum (TIBAL). A silica support is first pretreated with a silane compound and then with an organoboron compound. The treated silica is then combined with a Group 4 metallocene complex and an alumoxane to generate a supported, activated catalyst. While it was previously thought that the particular support treatment technique used herein provided benefits only for polymerizations catalyzed by non-metallocene single-site complexes, it has now been found that similar benefits can be realized even with conventional metallocenes if TIBAL is selected as the scavenger.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6875830
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6875829
    Abstract: A single-site olefin polymerization catalyst and method of making it are disclosed. The catalyst comprises an activator and an organometallic complex. The complex comprises a Group 3 to 10 transition or lanthanide metal, M, and at least one chelating N-oxide ligand that is bonded to M. Molecular modeling results indicate that single-site catalysts based on certain chelating N-oxide ligands (e.g., 2-hydroxypyridine) will rival the performance of catalysts based on cyclopentadienyl and substituted cyclopentadienyl ligands.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 6875879
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6864210
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a bimetallic complex that incorporates two Group 3 to 10 transition metal atoms, which may be the same or different, and a neutral or anionic indigoid ligand. By proper selection of the indigoid skeleton and by modifying its substituents and transition metal centers, polyolefin makers can fine-tune the bimetallic complexes to control activity, enhance comonomer incorporation, and optimize polymer properties.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 8, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6841500
    Abstract: Catalyst systems useful for olefin polymerization are disclosed. The catalysts include a bimetallic complex that incorporates two linked indenoindolyl groups, each of which is pi-bonded through its cyclopentadienyl ring to one of the metals. Compared with conventional indenoindolyl complexes, the bimetallic complexes of the invention have enhanced ability to give polyolefins with desirably low melt indices. Certain bimetallic indenoindolyl complexes also provide a way to broaden polymer molecular weight distribution and thereby improve processability simply by regulating the amounts of comonomer and activator used in the polymerization.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, William J. Sartain
  • Patent number: 6838410
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an ?-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described. Additionally, supported and unsupported indeno[1,2-b]indolyl catalysts provide exceptional activities in the preparation of elastomeric polypropylene and ethylene copolymers.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 4, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie, Craig C. Meverden
  • Patent number: 6818713
    Abstract: A process for polymerizing ethylene is disclosed. The process uses a catalyst system which has a supported open architecture indenoindolyl complex. We surprisingly found that modifying the open architecture complex to incorporate a C6-C20 hydrocarbyl amido group enables the production of polyethylene having good flow while maintaining high catalyst activity.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: November 16, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Gregory G. Hlatky
  • Patent number: 6812183
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a triple-decker bimetallic complex. The complex includes two Group 3-10 transition metals and a delocalized dianionic ligand that is pi-bonded to each of the metals. The behavior of the catalysts can be modified by choice of each metal, by the choice of the dianionic ligand, or by choice of the ancillary ligands. The invention provides a new way to make a large variety of catalyst systems.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: November 2, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Joel A. Mutchler
  • Patent number: 6794468
    Abstract: A process for polymerizing olefins is disclosed. The process combines a bridged indenoindolyl organometallic complex and an activator with a support material in the presence of an aromatic solvent. The supported catalyst containing the aromatic solvent is used to polymerize an olefin in the presence of hydrogen. Polyolefins from the process have improved flow properties.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: September 21, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6790918
    Abstract: Disclosed is a novel bidentate pyridine transition metal catalyst having the general formula each R is independently selected from hydrogen or C1 to C6 alkyl, or C6 to C14 aryl, each R′ is independently selected from R, C1 to C6 alkoxy, C6 to C14 aryl, C7 to C20 alkaryl, C7 to C20 aralkyl, halogen, or CF3, M is a Group 3 to 10 metal, each X is independently selected from halogen, C1 to C6 alkyl, C6 to C14 aryl, C7 to C20 alkaryl, C7 to C20aralkyl, C1 to C6 alkoxy, or L is X, cyclopentadienyl, C1 to C6 alkyl substituted cyclopentadienyl, indenyl, fluorenyl, or “n” is 1 to 4; “a” is 1 to 3; “b” is 0 to 2; a+b≦3; “c” is 1 to 6; and a+b+c equals the oxidation state of M.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: September 14, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Leonard V. Cribbs, Bradley P. Etherton, Mary Cocoman, Ramesh Krishnamurti, John A. Tyrell
  • Patent number: 6774078
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and an annulated cyclopentadienyl ligand that is pi-bonded to the metal. A one-pot method for making organometallic complexes from fulvene precursors is also disclosed. Additionally, the invention includes bimetallic complexes from cyclopentazulenyl compounds and a one-pot method for making them. Molecular modeling studies reveal that organometallic complexes incorporating such annulated cyclopentadienyl ligands, when combined with an activator such as MAO, should actively polymerize olefins.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: August 10, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jonathan L. Schuchardt
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6756455
    Abstract: A high-temperature solution process for making polyolefins is disclosed. Olefins polymerize at greater than about 130° C. in the presence of an activator and an organometallic complex. The complex includes a bridged indenoindolyl ligand. One part of the ligand is a second indenoindolyl group or a polymerization-stable, cyclopentadienyl-like group having an extended pi-electron system. Because the catalysts activate quickly and thoroughly, even with low levels of an alumoxane, the invention provides an efficient way to make high-molecular-weight (Mw>100K) polyolefins.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 29, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, William G. Todd, Charles S. Holland
  • Patent number: 6737487
    Abstract: A block copolymer of an &agr;-olefin and a second olefin is disclosed. The block copolymers are not highly isotactic, but contain isotactic sequences and have a narrow molecular weight distribution. A process for the preparation of these block copolymers and blends of these copolymers are also disclosed.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 18, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Craig C. Meverden