Patents Represented by Attorney, Agent or Law Firm Joseph Yang
  • Patent number: 6654884
    Abstract: Differential power analysis is a powerful cryptanalytic method that can be used to extract secret keys from cryptographic hardware during operation. To reduce the risk of compromise, cryptographic hardware can employ countermeasures to reduce the amount of secret information that can be deduced by power consumption measurements during processing. Such countermeasures can include balancing circuitry inside a cryptographic hardware device to reduce the amount of variation in power consumption that is correlated to data parameters being manipulated. This can be facilitated by using a constant-Hamming-weight representation when representing and manipulating secret parameters. Low-level operation modules, such as Boolean logic gates, can be built to process input parameters in a manner that balances the number of ON transistors while simultaneously maintaining a data-independent number of transistor transitions during computation.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: November 25, 2003
    Assignee: Cryptography Research, Inc.
    Inventors: Joshua M. Jaffe, Paul C. Kocher, Benjamin C. Jun
  • Patent number: 6640305
    Abstract: Before use, a population of tamper-resistant cryptographic enforcement devices is partitioned into groups and issued one or more group keys. Each tamper-resistant device contains multiple computational units to control access to digital content. One of the computational units within each tamper-resistant device communicates with another of the computational units acting as an interface control processor, and serves to protect the contents of a nonvolatile memory from unauthorized access or modification by other portions of the tamper-resistant device, while performing cryptographic computations using the memory contents. Content providers enforce viewing privileges by transmitting encrypted rights keys to a large number of recipient devices. These recipient devices process received messages using the protected processing environment and memory space of the secure unit.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: October 28, 2003
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe, Benjamin C. Jun
  • Patent number: 6539092
    Abstract: Methods and apparatuses for increasing the leak-resistance of cryptographic systems using an indexed key update technique are disclosed. In one embodiment, a cryptographic client device maintains a secret key value as part of its state. The client can update its secret value at any time, for example before each transaction, using an update process that makes partial information that might have previously leaked to attackers about the secret no longer usefully describe the new updated secret value. By repeatedly applying the update process, information leaking during cryptographic operations that is collected by attackers rapidly becomes obsolete. Thus, such a system can remain secure (and in some embodiments is provably secure) against attacks involving analysis of measurements of the device's power consumption, electromagnetic characteristics, or other information leaked during transactions. The present invention can be used in connection with a client and server using such a protocol.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: March 25, 2003
    Assignee: Cryptography Research, Inc.
    Inventor: Paul C. Kocher
  • Patent number: 6510518
    Abstract: Cryptographic devices that leak information about their secrets through externally monitorable characteristics (such as electromagnetic radiation and power consumption) may be vulnerable to attack, and previously-known methods that could address such leaking are inappropriate for smartcards and many other cryptographic applications. Methods and apparatuses are disclosed for performing computations in which the representation of data, the number of system state transitions at each computational step, and the Hamming weights of all operands are independent of computation inputs, intermediate values, or results. Exemplary embodiments implemented using conventional (leaky) hardware elements (such as electronic components, logic gates, etc.) as well as software executing on conventional (leaky) microprocessors are described. Smartcards and other tamper-resistant devices of the invention provide greatly improved resistance to cryptographic attacks involving external monitoring.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: January 21, 2003
    Assignee: Cryptography Research, Inc.
    Inventors: Joshua M. Jaffe, Paul C. Kocher, Benjamin C. Jun
  • Patent number: 6421768
    Abstract: Cryptographically assured data structures are created to enable a single sign on and/or authentication method for securely transferring user authentication information from a first computer to a second computer to allow the user to seamlessly interact with the second computer without necessarily re-authenticating himself thereto. Thus, if a second computer trusts the methods used by a first computer to authenticate a user, then the second computer can use a cryptographically assured cookie created by the first computer to authenticate the user, without requiring the user to perform an explicit authentication step at the second computer. More particularly, a cryptographically assured cookie is made by creating a cryptographically assured voucher of a user characteristic at the first computer, and embedding the voucher into a cookie for transmission to the user's computer and hence to the second computer.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: July 16, 2002
    Assignee: First Data Corporation
    Inventor: Stephen J. Purpura
  • Patent number: 6381699
    Abstract: The present invention provides a method and apparatus for securing cryptographic devices against attacks involving external monitoring and analysis. A “self-healing” property is introduced, enabling security to be continually re-established following partial compromises. In addition to producing useful cryptographic results, a typical leak-resistant cryptographic operation modifies or updates secret key material in a manner designed to render useless any information about the secrets that may have previously leaked from the system. Exemplary leak-proof and leak-resistant implementations of the invention are shown for symmetric authentication, certified Diffie-Hellman (when either one or both users have certificates), RSA, ElGamal public key decryption, ElGamal digital signing, and the Digital Signature Algorithm.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: April 30, 2002
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe
  • Patent number: 6327661
    Abstract: Methods and apparatuses are disclosed for securing cryptosystems against external monitoring attacks by reducing the amount (and signal to noise ratio) of useful information leaked during processing. This is generally accomplished by incorporating unpredictable information into the cryptographic processing. Various embodiments of the invention use techniques such as reduction of signal to noise ratios, random noise generation, clock skipping, and introducing entropy into the order of processing operations or the execution path. The techniques may be implemented in hardware or software, may use a combination of digital and analog techniques, and may be deployed in a variety of cryptographic devices.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: December 4, 2001
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe, Benjamin C. Jun
  • Patent number: 6304658
    Abstract: The present invention provides a method and apparatus for securing cryptographic devices against attacks involving external monitoring and analysis. A “self-healing” property is introduced, enabling security to be continually re-established following partial compromises. In addition to producing useful cryptographic results, a typical leak-resistant cryptographic operation modifies or updates secret key material in a manner designed to render useless any information about the secrets that may have previously leaked from the system. Exemplary leak-proof and leak-resistant implementations of the invention are shown for symmetric authentication, certified Diffie-Hellman (when either one or both users have certificates), RSA, ElGamal public key decryption, ElGamal digital signing, and the Digital Signature Algorithm.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: October 16, 2001
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe
  • Patent number: 6298442
    Abstract: Methods and apparatuses are disclosed for securing cryptosystems against external monitoring attacks by reducing the amount (and signal to noise ratio) of useful information leaked during processing. In general, this is accomplished by implementing critical operations using “branchless” or fixed execution path routines whereby the execution path does not vary in any manner that can reveal new information about the secret key during subsequent operations. More particularly, various embodiments of the invention include: implementing modular exponentiation without key-dependent conditional jumps; implementing modular exponentiation with fixed memory access patterns; implementing modular multiplication without using leak-prone multiplication-by-one operations; and implementing leak-minimizing multiplication (and other operations) for elliptic curve cryptosystems.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: October 2, 2001
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe
  • Patent number: 6289455
    Abstract: A secure cryptographic rights unit for cryptographically regulating access to digital content includes an interface control processor and a specialized cryptographic unit that protects access to a memory. Rights keys, which allow access to content, are added by the cryptographic unit by transforming data received from the control processor and storing the result in the protected memory. The cryptographic unit then produces content decryption keys by using stored rights keys to transform other data received from the control processor. Because the control processor does not have the ability to directly access the protected memory, the security can remain effective even if the control processor is compromised. To prevent reverse engineering of the cryptographic transformations, the invention provides for an algorithm generator that uses random sources to produce algorithm definitions in machine-readable form. Because the generator itself does not contain any secrets, it can be submitted for open review.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: September 11, 2001
    Assignee: Crypotography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe, Benjamin C. Jun
  • Patent number: 6278783
    Abstract: Methods and apparatuses are disclosed for improving DES and other cryptographic protocols against external monitoring attacks by reducing the amount (and signal-to-noise ratio) of useful information leaked during processing. An improved DES implementation of the invention instead uses two 56-bit keys (K1 and K2) and two 64-bit plaintext messages (M1 and M2), each associated with a permutation (i.e., K1P, K2P and M1P, M2P) such that K1P {K1} XOR K2P {K2} equals the “standard” DES key K, and M1P {M1} XOR M2P {M2} equals the “standard” message. During operation of the device, the tables are preferably periodically updated, by introducing fresh entropy into the tables faster than information leaks out, so that attackers will not be able to obtain the table contents by analysis of measurements. The technique is implementable in cryptographic smartcards, tamper resistant chips, and secure processing systems of all kinds.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 21, 2001
    Assignee: Cryptography Research, Inc.
    Inventors: Paul C. Kocher, Joshua M. Jaffe, Benjamin C. Jun
  • Patent number: 6263446
    Abstract: A roaming user needing an his authentication credential (e.g., private key) to access a computer server to perform an electronic transaction may obtain the authentication credential in an on-demand fashion from a credential server accessible to the user over a computer network. In this way, the user is free to roam on the network without having to physically carry his authentication credential. Access to the credential may be protected by one or more challenge-response protocols involving simple shared secrets, shared secrets with one-to-one hashing, or biometric methods such as fingerprint recognition. If camouflaging is used to protect the authentication credential, decamouflaging may be performed either at the credential server or at the user's computer.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: July 17, 2001
    Assignee: Arcot Systems, Inc.
    Inventors: Balas Natarajan Kausik, Rammohan Varadarajan
  • Patent number: 6209102
    Abstract: A user inputting his access code (e.g., PIN or password) into an computing environment to access a transaction is at risk of losing the access code to an attacker who has physical or electronic access to the computing environment. To minimize this risk, the access code can be entered via a plurality of user-selectable fields, each of which takes on a series of values, the initially displayed values of which are established in a random or otherwise unpredictable manner. The user then uses a mouse, keyboard, or other input device to increment each of the selectable fields until the access code is correctly entered. Because of the randomization of the initial state, an attacker tracking the locations or number of mouse clicks or other navigation actions can not determine the finally entered access code by, e.g., computing an offset from a known initial state.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: March 27, 2001
    Assignee: Arcot Systems, Inc.
    Inventor: Douglas Hoover
  • Patent number: 6188766
    Abstract: The present invention provides an apparatus and method for confirming, timestamping, and archiving documents using telecopiers (e.g., facsimile machines). A user sends a document to a timestamping service via facsimile, which archives the transmission with a timestamp. A submission receipt, containing size-reduced images of the submission and a document identification value (DIV), is prepared and sent to the sender. The DIV can later be submitted to the timestamping service to obtain verification that the document was received at the indicated time. In addition, the invention allows for various other forms of document transmission, document identification, and timestamp verification. The invention is thus useful in any situation where it is desired to prove that a document was in existence at a given time. Other embodiments of the invention provide senders of facsimile and telecopier transmissions with confirmation that their transmissions were received successfully.
    Type: Grant
    Filed: March 5, 1997
    Date of Patent: February 13, 2001
    Assignee: Cryptography Research, Inc.
    Inventor: Paul C. Kocher
  • Patent number: 6170058
    Abstract: A digital wallet stores an cryptographically camouflaged access-controlled datum, e.g., a private key encrypted under the user's PIN. Entry of the correct PIN will correctly decrypt the stored key. Entry of certain pseudo-valid PINs will also decrypt the stored key, but improperly so, resulting in a candidate key indistinguishable from the correct key. Such pseudo-valid PINs are spread thinly over the space of PINs, so that the user is unlikely to realize a pseudo-valid PIN via a typographical error in entering the correct PIN. In existing wallet technologies, which lack pseudo-valid PINs, only the correct PIN produces a decrypted key; thus, hackers can find the correct PIN by entering all possible PINs until a key is produced. The present invention's plurality of candidate keys prevent a hacker from knowing when he has found the correct key. In addition, hacker detection may be moved off-line into devices accepting messages signed with candidate keys, and/or the lockout threshold may be increased.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: January 2, 2001
    Assignee: Arcot Systems, Inc.
    Inventor: Balas Natarajan Kausik