Patents Represented by Attorney K. Bean
  • Patent number: 8246718
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 21, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Patent number: 8220248
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 17, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker, Xiaotong Wei
  • Patent number: 8220247
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 17, 2012
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker, Xiaotong Wei
  • Patent number: 8177885
    Abstract: A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 15, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8168685
    Abstract: Disclosed herein is a methanol production process that includes a membrane separation step or steps. Using the process of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. As an additional advantage, the membrane separation step generates a hydrogen-rich stream which can be sent for other uses. An additional benefit is that the process of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: May 1, 2012
    Inventors: Nicholas P. Wynn, Douglas Gottschlich
  • Patent number: 8123943
    Abstract: The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: February 28, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Nicholas P Wynn, Yu Huang, Tiem Aldajani, Donald A Fulton
  • Patent number: 8034168
    Abstract: Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: October 11, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C Merkel, Richard W. Baker
  • Patent number: 8025715
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to a carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8016923
    Abstract: Disclosed herein are combustion systems, power plants, and flue gas treatment systems that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In yet another embodiment, the invention is a flue gas treatment system that incorporates three membrane separation units with a carbon dioxide liquefaction unit.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 13, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Richard W. Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 7946431
    Abstract: An inorganic membrane suitable for ultrafiltration or nanofiltration, and methods for making and using the membrane. The membrane has a organic polymer deposited on the feed surface, but is not able to perform separations by solution-diffusion.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 24, 2011
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Ingo Pinnau, Alvin Ng, Jennifer Ly, Anurag P Mairal
  • Patent number: 4383108
    Abstract: There is disclosed a simple economical method of producing butadiene rubber, particularly NBR, in dry powder form free of extraneous material influencing its utility in rubber products manufacture. The method consists of preparing the butadiene rubber in latex form in the usual manner but using sodium lauryl sulfate or equivalent as emulsifier and then coagulating the latex with a combination of magnesium sulfate and aluminum sulfate, or their equivalents, in a molar ratio of Mg to Al in the range of 0.3 to 1 to 2 to 1. The coagulum wet cake obtained contains powder size particles of the rubber and is dried to give a dry free-flowing rubber powder, preferably after addition of zinc stearate or equivalent which functions as an anticake agent and prevents agglomeration of the powder size particles during drying. The zinc stearate can be added to the wet cake as dry powder or as a wet paste or produced in situ.
    Type: Grant
    Filed: July 29, 1981
    Date of Patent: May 10, 1983
    Assignee: The B. F. Goodrich Company
    Inventor: August H. Jorgensen, Jr.
  • Patent number: 4339620
    Abstract: There is disclosed a method and composition for improving the fluidization characteristics and alleviating or inhibiting stickiness in a supported cupric chloride catalyst used as fluid bed catalyst in oxyhydrochlorinations reactions. The method involves the in situ preparation of the supported cupric chloride catalyst by addition of bare support on which no cupric chloride is deposited to the supported cupric chloride catalyst in the fluidized bed, or the use in the bed as the initial charge or as addition to the bed as makeup, of a composition which is a mixture of supported cupric chloride catalyst and bare support. In either event, as the oxyhydrochlorination proceeds, a portion of the cupric chloride on the supported catalyst becomes released therefrom and deposited in situ on the bare support, and stickiness of the cupric chloride containing catalyst particles to one another in the fluid bed is alleviated or inhibited.
    Type: Grant
    Filed: March 2, 1981
    Date of Patent: July 13, 1982
    Assignee: The B. F. Goodrich Company
    Inventors: Joseph A. Cowfer, Jamal S. Eden, Angelo J. Magistro
  • Patent number: 4269668
    Abstract: The separation of butadiene-1,3 from other C-4 hydrocarbons of lesser degree of unsaturation by extractive distillation with alkoxynitrile or aqueous alkoxynitrile as selective solvent is carried out with improved selectivity, without appreciable formation of butadiene-1,3 polymer and with consequent savings in energy by adding to the alkoxynitrile or aqueous alkoxynitrile an organic cosolvent which is dimethyl sulfoxide, sulfolane, butyrolactone, N-methyl pyrrolidone, morpholine, or trimethyl phosphate and/or an inhibitor which is 2,4-dinitrophenol or 2,4-dinitro-ortho-cresol. The organic cosolvent is present in the selective solvent composition in an amount of 5 to 30 percent by weight and the inhibitor in an amount of 0.05 to 0.6 percent by weight.
    Type: Grant
    Filed: May 19, 1980
    Date of Patent: May 26, 1981
    Assignee: The B. F. Goodrich Company
    Inventor: Pradeep V. Patel
  • Patent number: 4268361
    Abstract: Formation of butadiene-1,3 polymer during the extractive distillation of a C-4 hydrocarbon mixture to separate and purify butadiene-1,3 using a solvent composition in which an alkoxynitrile is present in a proportion of 50-99 percent by weight, is decreased through inclusion in the solvent of a synergistic combination of 2,4-dinitrophenol and phosphoric acid, each in a proportion of 0.05 to 0.5 percent by weight.
    Type: Grant
    Filed: May 19, 1980
    Date of Patent: May 19, 1981
    Assignee: The B. F. Goodrich Company
    Inventor: Pradeep V. Patel
  • Patent number: 3965068
    Abstract: Smoke retardant vinyl chloride and vinylidene chloride polymer compositions are obtained by including therein a synergistic mixture of (A) at least one nickel compound selected from the group consisting of NiCO.sub.3, NiCl.sub.2, NiO, NiS and nickel acetylacetonate and (B) at least one zinc compound selected from the group consisting of ZnCO.sub.3, ZnCrO.sub.4, ZnMoO.sub.4, Zn.sub.3 (PO.sub.4).sub.2, Zn.sub.2 SiO.sub.4, ZnSO.sub.4, ZnTiO.sub.3, Zn.sub.2 ZrO.sub.4, zinc ammonium sulfate, zinc borate, zinc acetylacetonate, zinc formate, zinc oxalate, and M.sub.2.sub.-2x Zn.sub.3.sub.+x [Fe(CN).sub.6 ].sub.2.yH.sub.2 O wherein M is an alkali metal, x is from 0 to 1, and y is from 0 to 4. Substantial smoke retardation is also obtained by including the above nickel compound or zinc compounds individually in the vinyl chloride or vinylidene chloride polymer compositions.
    Type: Grant
    Filed: February 10, 1975
    Date of Patent: June 22, 1976
    Assignee: The B. F. Goodrich Company
    Inventor: Elmer D. Dickens, Jr.
  • Patent number: 3957697
    Abstract: A propylene oxide slurry polymerization process having high catalyst efficiency comprises (A) homopolymerizing or copolymerizing propylene oxide in isobutane in the presence of a catalyst substantially soluble in isobutane, (B) separating isobutane with catalyst dissolved therein from propylene oxide polymer, and (C) recycling isobutane and dissolved catalyst for further polymerization. The catalyst comprises (1) at least one trialkylaluminum compound wherein each alkyl group contains from 2 to 10 carbon atoms, (2) at least one diketone containing from 5 to 20 carbon atoms and (3) water. The catalyst may also contain (4) at least one dialkyl ether or cycloalkyl ether containing from 2 to 12 carbon atoms and/or (5) at least one ether alcohol containing from 2 to 12 carbon atoms.
    Type: Grant
    Filed: October 24, 1974
    Date of Patent: May 18, 1976
    Assignee: The B. F. Goodrich Company
    Inventor: Robert K. Schlatzer
  • Patent number: 3944535
    Abstract: Butadiene or isoprene are polymerized in the presence of a catalyst prepared by the interaction of (a) an aluminum compound of the general formula R.sub.2 AlX wherein R is an alkyl, cycloalkyl or aryl radical and X is hydrogen, halogen, or an alkyl, cycloalkyl or aryl radical, with (b) a metal halide selected from the group consisting of the chlorides, bromides and iodides of titanium and zirconium, the resulting polymer having a high degree of flexibility at low temperature.
    Type: Grant
    Filed: April 18, 1955
    Date of Patent: March 16, 1976
    Assignee: The B. F. Goodrich Company
    Inventor: Robert J. Slocombe
  • Patent number: 3941843
    Abstract: Dark colored impurities, 2-aminonaphthalene and 2-naphthol are extracted from crude N,N'-di-2-naphthyl-p-phenylenediamine by contacting with a mixed solvent system comprising (A) at least one compound selected from the group consisting of alkanols and alkanediols and (B) at least one alkylated benzene.
    Type: Grant
    Filed: May 16, 1974
    Date of Patent: March 2, 1976
    Assignee: The B. F. Goodrich Company
    Inventors: George Kletecka, Mark E. Forry