Patents Represented by Attorney Kathleen S. Moss
  • Patent number: 5455850
    Abstract: A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: October 3, 1995
    Assignee: The Regents of the Univerity of Calif.
    Inventors: Malcolm R. Howells, Chris Jacobsen
  • Patent number: 5427993
    Abstract: A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: June 27, 1995
    Assignee: Regents, the University of California
    Inventors: Dale L. Perry, Richard E. Russo, Xianglei Mao
  • Patent number: 5416327
    Abstract: An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: May 16, 1995
    Assignee: Regents of the University of California
    Inventors: Shimon Weiss, Daniel S. Chemla, D. Frank Ogletree, David Botkin
  • Patent number: 5374472
    Abstract: A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.
    Type: Grant
    Filed: January 4, 1994
    Date of Patent: December 20, 1994
    Assignee: The Regents, University of California
    Inventor: Kannan M. Krishnan
  • Patent number: 5372813
    Abstract: Disclosed is a substituted 6-nitroquipazine of the formula ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, and R.sub.4 are each selected from the group consisting of H, Fl, CL, Br, I, CF.sub.3, CH.sub.2 CH.sub.2 F, CH.sub.3, CH.sub.2 CH.sub.3, and --CH(CH.sub.3).sub.2, and wherein one of R.sub.1, R.sub.2, R.sub.3, and R.sub.4 is other than H.Also disclosed is a method for measurement of serotonin uptake sites in a sample, in which a radioligand is incubated with a sample and then the radioactivity of the radioligand bound to the sample is determined, utilizing a radio labeled substituted 6-nitroquipazine as the radioligand. Also disclosed is a method of manufacture and method of use.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: December 13, 1994
    Assignee: The Regents, University of California
    Inventors: Chester A. Mathis, Jr., Anat Biegon, Scott E. Taylor, Joel D. Enas
  • Patent number: 5373443
    Abstract: A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.
    Type: Grant
    Filed: October 6, 1993
    Date of Patent: December 13, 1994
    Assignee: The Regents, University of California
    Inventors: Ki H. Lee, Gan Q. Xie
  • Patent number: 5365070
    Abstract: A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.
    Type: Grant
    Filed: April 29, 1992
    Date of Patent: November 15, 1994
    Assignee: The Regents of the University of California
    Inventors: Oscar A. Anderson, Chun F. Chan, Ka-Ngo Leung
  • Patent number: 5308661
    Abstract: A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: May 3, 1994
    Assignee: The Regents of the University of California
    Inventors: Zhu Feng, Marilee Brewer, Ian Brown, Kyriakos Komvopoulos
  • Patent number: 5302475
    Abstract: An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.
    Type: Grant
    Filed: November 12, 1991
    Date of Patent: April 12, 1994
    Assignee: The Regents of the University of California
    Inventors: Thomas C. Adler, Frank R. McLarnon, Elton J. Cairns
  • Patent number: 5277653
    Abstract: Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.
    Type: Grant
    Filed: September 11, 1991
    Date of Patent: January 11, 1994
    Assignee: The Regents, University of California
    Inventor: Ashok J. Gadgil
  • Patent number: 5278417
    Abstract: A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: January 11, 1994
    Assignee: The Regents of the University of California
    Inventor: Rai Ko S.F. Sun
  • Patent number: 5270092
    Abstract: A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.
    Type: Grant
    Filed: August 8, 1991
    Date of Patent: December 14, 1993
    Assignee: The Regents, University of California
    Inventors: Brent T. Griffith, Dariush K. Arasteh, Stephen E. Selkowitz
  • Patent number: 5256636
    Abstract: A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An insitu method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T.sub.c superconductor thin films.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: October 26, 1993
    Assignee: The Regents of the University of Calif.
    Inventors: Frederick C. Wellstood, John J. Kingston, John Clarke
  • Patent number: 5254950
    Abstract: A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
    Type: Grant
    Filed: September 13, 1991
    Date of Patent: October 19, 1993
    Assignee: The Regents, University of California
    Inventors: Non Q. Fan, John Clarke
  • Patent number: 5182524
    Abstract: Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage.
    Type: Grant
    Filed: March 10, 1992
    Date of Patent: January 26, 1993
    Assignee: The Regents of the University of Calif.
    Inventor: Donald B. Hopkins
  • Patent number: 5171996
    Abstract: Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.
    Type: Grant
    Filed: July 31, 1991
    Date of Patent: December 15, 1992
    Assignee: Regents of the University of California
    Inventor: Victor Perez-Mendez
  • Patent number: 5171610
    Abstract: Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.
    Type: Grant
    Filed: August 28, 1990
    Date of Patent: December 15, 1992
    Assignee: The Regents of the University of Calif.
    Inventor: David K. Liu
  • Patent number: 4921557
    Abstract: This invention relates in general to fabricating fiber-reinforced membranes sing elastomeric materials and, in particular, to a filament winding process suitable for fabricating flexible fiber-reinforced membranes for inflatable depolyable or expandable structures capable of sustaining high structural loads or providing thermal insulation to the structure. The invention relates especially to a filament winding process for fabricating a flexible membrane which may be inflated to provide a conically shaped deployable nose fairing for a missile.
    Type: Grant
    Filed: June 13, 1988
    Date of Patent: May 1, 1990
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Wayne H. Nakamura