Abstract: The preferred embodiments of the present invention use MRAM technology to detect a shift in the magnetic switching field of a sensor. The shift in the magnetic switching field is caused by the presence of magnetic tagged beads. By measuring the magnitude of the shift in the magnetic field and correlating the magnitude of the shift to the presence of the target molecules, accurate measurements regarding the presence of the target molecules can be made.
Abstract: In one embodiment, a copper interconnect structure is formed by depositing a dielectric layer (28) on a semiconductor substrate (10). The dielectric layer (28) is then patterned to form interconnect openings (29). A layer of copper (34) is then formed within the interconnect openings (29). A portion of the copper layer (34) is then removed to form copper interconnects (39) within the interconnect openings (29). A copper barrier layer (40) is then formed overlying the copper interconnects (39). Adhesion between the copper barrier layer (40) and the copper interconnects (39) is improved by exposing the exposed surface of the copper interconnects (39) to a plasma generated using only ammonia as a source gas.
Type:
Grant
Filed:
April 6, 1998
Date of Patent:
January 16, 2001
Assignee:
Motorola, Inc.
Inventors:
Rabiul Islam, Avgerinos V. Gelatos, Kevin Lucas, Stanley M. Filipiak, Ramnath Venkatraman
Abstract: A method for forming void free tungsten plug contacts (56a-56c) begins by etching a contact opening (55a-55c) using a C.sub.2 F.sub.6 and CHF.sub.3 chemistry. The etch chemistry is then changed to an O.sub.2 and CH.sub.3 F chemistry in order to insitu remove the contact photoresist while tapering an upper portion of the contact opening. A tungsten deposition process is then performed whereby the tapered portion of the contact reduces the effects of nonconformal and step-coverage-inconsistent tungsten deposition wherein voids in the contact are either substantially reduced or totally avoided within the contact structure. The reduction of or total elimination of voids (22) within the tungsten contact will increase yield, increase reliability, and reduce electromigration failures within integrated circuit devices.
Type:
Grant
Filed:
February 18, 1997
Date of Patent:
November 7, 2000
Assignee:
Motorola, Inc.
Inventors:
Robert Arthur Rodriguez, Heather Marie Klesat
Abstract: A method for manufacturing a semiconductor wafer begins by placing the wafer into a process chamber (74). A metal etch gas is then provided through a gas fitting (52) having an outlet tube (52b). The outlet tube (52b) is threadless and is made of a material which will not substantially corrode in the presence of the corrosive etch gas. In addition, the outlet tube (52b) contains gas distribution openings (84) which improve gas distribution within a gas channel (54b) of a gas ring (54). The elimination of the threading in the gas feed inlet (54a) of the gas ring (54) will allow a sidewall of the inlet (54a) to be anodized for greater corrosion protection. The reduction in corrosion will improve wafer yield, reduce manufacturing costs, and reduce equipment down time.