Patents Represented by Attorney Kevin D. Martin
  • Patent number: 7235493
    Abstract: One embodiment of a method for forming a low-k dielectric for a semiconductor device assembly comprises forming a silicon dioxide layer, then forming a patterned masking layer such as silicon nitride on the silicon dioxide. Using the patterned nitride layer as a pattern, the silicon dioxide is etched to form a plurality of hemispherical microcavities in the silicon dioxide. Openings in the patterned nitride are filled, then another layer is formed over the silicon nitride layer using the silicon nitride as a support over the microcavities. An inventive structure resulting from the method is also described.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Shu Qin
  • Patent number: 7199449
    Abstract: A method used to form a semiconductor device comprises processing a semiconductor wafer to include one or more vias or through-holes only partially etched into the wafer, and scribe marks only partially etched into the wafer which define a plurality of semiconductor devices. Wafer material is removed from the back of the wafer to the level of the vias and scribe marks to form a via opening through the wafer while simultaneously dicing the wafer into individual semiconductor dice.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Rickie C. Lake
  • Patent number: 7199050
    Abstract: A method for forming vias which pass through a semiconductor wafer substrate assembly such as a semiconductor die or wafer allows two different types of connections to be formed during a single formation process. One connection passes through the wafer without being electrically coupled to the wafer, while the other connection electrically connects to a conductive pad. To connect to a pad, a larger opening is etched into an overlying dielectric layer, while to pass through a pad without connection, a narrower opening is etched into the overlying dielectric layer. An inventive structure resulting from the method is also described.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventor: William M. Hiatt
  • Patent number: 7187047
    Abstract: A method used to form a semiconductor device comprises forming a polysilicon layer, forming a conductive barrier layer on the polysilicon layer, then forming a conductive nitride layer on the conductive barrier layer. Next, a conductive amorphous layer is formed on the conductive barrier layer, and an elemental metal layer is formed on the conductive amorphous layer. Without the conductive amorphous layer the elemental metal layer would form on the conductive nitride layer as a small grained, high resistance layer, while it forms on the conductive amorphous layer as a large grained, low resistance layer. A semiconductor device which may be formed using this method is also described.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: March 6, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun J. Hu
  • Patent number: 7163017
    Abstract: A method for etching a polysilicon layer comprises the steps of providing a semiconductor wafer substrate assembly having at least first and second features therein in spaced relation to each other which define an opening therebetween. A blanket polysilicon is formed over the wafer assembly and within the opening. A patterned photoresist layer is formed over the polysilicon layer, then the polysilicon layer within the opening is etched with a first etch. Subsequent to the first etch, the polysilicon with the opening is etched with a second etch comprising a halogen-containing gas flow rate of from about 35 sccm to about 65 sccm and an oxygen-containing gas (for example He—O2) flow rate of from about 12 sccm to about 15.6 sccm.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: January 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: David J. Keller
  • Patent number: 7153788
    Abstract: A method for attaching a workpiece, for example a semiconductor die, to a workpiece holder, for example a lead frame die support, comprises the steps of interposing an uncured adhesive between the semiconductor die and the die support and preheating the adhesive from an ambient temperature to a preheat temperature of between about 150° C. and about 160° C. over a period of about 1.5 seconds. Next, the preheat temperature is maintained for about 1.5 seconds, then the adhesive is further heated to a temperature of between about 190° C. and about 200° C. over a period of about 1.0 second. The inventive method quickly cures the adhesive to secure the die to the support with acceptably low levels of voiding. An apparatus which can be adapted to perform the inventive method is further described.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ed Schrock, Tongbi Jiang
  • Patent number: 7119024
    Abstract: A method used to form a semiconductor device provides a silicide layer on a plurality of transistor word lines and on a plurality of conductive plugs. In one embodiment, the word lines, one or more sacrificial dielectric layers on the word lines, conductive plugs, and a conductive enhancement layer are formed through the use of a single mask. An in-process semiconductor device which can be formed using one embodiment of the inventive method is also described.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 10, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fredrick D. Fishburn, Terrence B. McDaniel, Richard H. Lane
  • Patent number: 7105403
    Abstract: A method for forming a double sided container capacitor comprises forming a first capacitor top plate layer within a recess in a dielectric layer, then forming a first cell dielectric on the first top plate layer. Next, first and second bottom plate layers are formed on the first cell dielectric layer, and a second cell dielectric layer is formed on the second bottom plate layers. Finally, a second top plate layer is formed on the second cell dielectric layer, and the first and second top plate layers are electrically connected using a conductive plug or conductive spacer. An inventive structure formed using the inventive method is also described.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Thomas M. Graettinger, Marsela Pontoh, Thomas A. Figura
  • Patent number: 7101814
    Abstract: A method for forming a semiconductor device comprises forming a dielectric layer over a semiconductor wafer substrate assembly having closely-spaced regions, such as a memory transistor array, and widely-spaced regions, such as a periphery. Under conditions specified, the dielectric layer forms to have a first thickness over the closely-spaced regions and a second thickness over the widely-spaced regions. The second thickness is much thinner than the first thickness and dielectric over the widely-spaced regions may be etched away with a blanket etch which leaves the majority of the dielectric layer over the closely-spaced regions.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: September 5, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Christopher W. Hill
  • Patent number: 7094699
    Abstract: A method used to fabricate a semiconductor device comprises etching a dielectric which results in an undesirable charge buildup along a sidewall formed in the dielectric during the etch. The charge buildup along a top and a bottom of the sidewall can reduce the etch rate thereby resulting in excessive etch times and undesirable etch opening profiles. To remove the charge, a sacrificial conductive layer is formed which electrically shorts the upper and lower portions of the sidewall and eliminates the charge. In another embodiment, a gas is used to remove the charge. After removing the charge, the dielectric etch may continue. Various embodiments of the inventive process and in-process structures are described.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Bradley J. Howard, Dinesh Chopra
  • Patent number: 7087949
    Abstract: A method used to form a semiconductor device comprises forming a layer such as a container capacitor layer having a bottom plate layer. The bottom plate layer is formed to define a receptacle, and a rim which defines an opening to an interior of the receptacle. The bottom plate layer is formed to have a smooth texture. Subsequently, an inhibitor layer is formed on the rim of the bottom plate layer while a majority of the receptacle defined by the bottom plate layer remains free from the inhibitor. With the inhibitor layer on the rim of the bottom plate layer, at least a portion of the receptacle is converted to have a rough texture, such as to hemispherical silicon grain (HSG) polysilicon, while subsequent to the conversion the smooth texture of the rim which defines the opening to the interior of the receptacle remains. A resulting structure is also described.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: August 8, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Belford T. Coursey
  • Patent number: 7084448
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore
  • Patent number: 7078326
    Abstract: A method used to form a cobalt metal layer on a silicon surface using an atomic layer deposition (ALD) process comprises a treatment of the silicon surface prior to cobalt formation. Treatment includes serial exposure to one or more cycles comprising a titanium nitride precursor or a tantalum nitride precursor, followed by an optional exposure to ammonia. After this treatment, the silicon surface is exposed to a metal organic cobalt such as cyclopentadienylcobalt dicarbonyl to form a cobalt precursor on the silicon surface, which is then exposed to hydrogen or ammonia to reduce the precursor to an ALD cobalt metal layer. Once this initial metal layer is formed, additional cobalt ALD layers may be completed to form a cobalt metal layer of a desired thickness.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 18, 2006
    Inventor: Eugene P. Marsh
  • Patent number: 7060629
    Abstract: A method for etching silicon nitride selective to silicon dioxide and silicon (polycrystalline silicon or monocrystalline silicon) comprises the use of oxygen along with an additional etchant of either CHF3 or CH2F2. Flow rates, power, and pressure settings are specified.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: June 13, 2006
    Inventor: David S. Pecora
  • Patent number: 7052972
    Abstract: A method for forming a semiconductor device comprises forming a layer to be etched, then forming a hard mask layer over the layer to be etched. The hard mask is etched to form an opening defined by first and second cross-sectional sidewalls in the hard mask layer. In one embodiment, the opening in the hard mask layer is formed at the minimum limits allowable by optical lithography. A conformal spacer layer is formed over the hard mask layer and on the sidewalls of the hard mask, then spacer etched to form first and second cross-sectional spacers along the first and second sidewalls in the patterned hard mask layer. The hard mask and spacers are preferably formed from amorphous carbon. The layer to be etched is etched using the hard mask layer and the spacers as a pattern, then the hard mask layer and spacers are removed.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 30, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Patent number: 7053444
    Abstract: A method for forming a flash memory device having a local interconnect connecting source regions of a plurality of transistors within a sector allows for a highly selective wet etch of a dielectric region overlying the source region. An embodiment of the method comprises the use of an etch-resistant layer covering various features such as any gate oxide remaining over the source region, spacers along sidewalls of the transistor stacks, and a capping layer of the transistor. An in-process semiconductor device resulting from the inventive method is also disclosed.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: May 30, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Chun Chen
  • Patent number: 7046339
    Abstract: A method and structure for optimizing an optical lithography illumination source comprises a shaped diffractive optical element (DOE) interposed between the illuminator and a lens during the exposure of a photoresist layer over a semiconductor wafer. The DOE may, in some instances, increase depth of focus, improve the normalized image log-slope, and improve pattern fidelity. The DOE is customized for the particular pattern to be exposed. Descriptions and depictions of specific DOE's are provided. Additionally, a pupilgram having a particular pattern, and methods for forming the pupilgram, are discussed.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 16, 2006
    Assignee: Micron Technology, Inc.
    Inventors: William A. Stanton, Jeffrey L. Mackey
  • Patent number: 7018675
    Abstract: A method for forming a ruthenium metal layer comprises combining a ruthenium precursor with a measured amount of oxygen to form a ruthenium oxide layer. The ruthenium oxide is annealed in the presence of a hydrogen-rich gas to react the oxygen in the ruthenium oxide with hydrogen, which results in a ruthenium metal layer. By varying the oxygen flow rate during the formation of ruthenium oxide, a ruthenium metal layer having various degrees of smooth and rough textures can be formed.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Sam Yang
  • Patent number: 7015528
    Abstract: A method used during the formation of a semiconductor device comprises forming a first portion of a digit line contact plug before forming storage capacitors. Subsequent to forming storage capacitors, a second portion of the digit line plug is formed to contact the first portion, then the digit line runner is formed to contact the second plug portion. A structure resulting from the process is also described.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: March 21, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Brent A. McClure
  • Patent number: 7015111
    Abstract: A sidewall oxidation process for use during the formation of a transistor such as a flash memory cell allows for improved control of a gate oxide profile. The method comprises doping transistor source and drain regions to different doping levels, then performing a transistor sidewall oxidation using a particular process to modify the gate oxide thickness. The oxide forms at a faster rate along the source sidewall than along the drain sidewall. By using ranges within the oxidation environment described, a source side gate oxide having a variable and selectable thickness may be formed, while forming a drain-side oxide which has a single thickness where a thinner layer is desirable. This leads to improved optimization of key competing requirements of a flash memory cell, such as program and erase performance, while maintaining sufficient long-term data retention. The process may allow improved cell scalability, shortened design time, and decreased manufacturing costs.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: March 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Paul J. Rudeck, Don C. Powell